IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re patent of Jiancheng Guo et al.
U.S. Patent 9,578,040

Issue Date: ~ February 21, 2017

Filing Date: December 16, 2014

For: PACKET RECEIVING METHOD,
DEEP PACKET INSPECTION
DEVICE AND SYSTEM

Mail Stop “Ex Parte Reexam”
Attn: Central Reexamination Unit
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

L L L L L L L L L L L

Attorney Docket No.: U022-0007RE

Customer No.: 29,150

DECLARATION OF ANGELOS KEROMYTIS, PH.D.

Unified Patents, LLC Exhibit 10063

1of 161

IL.

I1I.

IvV.

VL

VIL

VIIL

TABLE OF CONTENTS

INTRODUCTION ..o
QUALIFICATIONS L
MATERIALS CONSIDERED ..ot

RELEVANT LEGAL STANDARDS ...

A. Level of Ordinary Skill inthe Art....................oocoiii e
B. ANTCIPALION. ...,
C. ODBVIOUSTIESS ...
D. Claim CONSTIUCTION ...ttt
E. Substantial New Question of Patentabilityocoooi
U.S. PATENT 9,578,040ooiiiiiiiii i
A. Brief Overview of Deep Packet Inspection ...
B. Brief Overview of the Domain Name System ..o
C. Summary of the 040 Patent ...
D. Prosecution RiStOTY............ooooiiii oo
CLAIM CONSTRUCTION ..ot
A. “discarding the service request packet” (independent claims 1, 6, and 11)........
B. “if the resolved service server IP address does not belong to a preset service
server IP address ... in a preset list” (independent claims 1, 6, and 11) “if
the resolved service server IP address belongs to the preset service server
1P address ... in the preset list” (dependent claims 4 and 5).............................
PRIOR ART PATENTS AND PRINTED PUBLICATIONS............ccccooiiiiiie,
Ground 1: RFC 1928 in View of Koblas and RFC 3089 (the “SOCKS
References”) Presents a Substantial New Question of Patentability
A Overview of the SOCKS References.................coocooiiiiiiiiiiiii
1. REC 1928 ..o

2 of 161

IX.

2. OB AS .o

3. REC 3089 ...

B. The Combination of RFC 1928, Koblas, and RFC 3089 Presents a

Substantial New Question of Patentabilityocoooi

Grounds 2-5: Treuhaft, Treuhaft in View of Sorenson, and Treuhaft/Sorenson

in View of Bellinson Present Substantial New Questions of Patentability
A. Overview of the References.....................c.coiiiiii
1. Treuhatft. ...
2. SOTENSOM ...

3. BEIlITISON ..o

B. Treuhaft, Treuhaft in view of Sorenson, and Treuhaft/Sorenson in view of

Bellinson Present Substantial New Questions of Patentability

Detailed Application of the Prior Art to Every Claim for which

Reexamination is Requested...................o.coiiiiii e

A Ground 1: RFC 1928 in view of Koblas and RFC 3089 (“SOCKS”) Render

Obvious Claims 1, 4-6, and 9-11 of the 040 Patent..
1. Independent Claim 1.
2. Dependent Claim 4 ...
3. Dependent Claim S ...
4. Independent Claim ©.....................oooooiiiiiie e
5. Dependent Claim O ...
6. Dependent Claim 10 ...,
7. Independent Claim 11 ...

B. Grounds 2 and 3: Treuhaft Anticipates and/or Renders Obvious Claims 1, 4-

6, and 9-11 of the 040 Patent ...t
1. Independent Claim 1.
2. Dependent Claim 4 ...
3. Dependent Claim S ...

3 of 161

4. Independent Claim ©.....................oooiiiii e 79

5. Dependent Claim O ... 81

6. Dependent Claim 10 ... 82

7. Independent Claim 11 ... 82
C. Ground 4: Treuhaft in View Sorenson Renders Obvious Claims 1, 4-6, and

O-11 of the 040 Patent.............oocooiiiiiiii e 85

1. Sorenson Discloses Discarding the Service Request Packet “if

the [Resolved] Service Server IP Address Does Not Belong to
a Preset Service Server IP Address ... in a Preset List”

(Elements [1.3], [6.3], and [11.3]) ...oooooiiioioeeeee e, 85
2. Rationale to Combine Sorenson with Treuhaft.................cccooooiiiiiiiiiiiiiii 87

D. Grounds 5 and 6: Treuhaft/Sorenson in View of Bellinson Renders Obvious
Claims 1, 4-6, and 9-11 of the 040 Patent Under § 103 91

1. Bellinson Discloses Discarding the Request “if the [Resolved]
Service Server IP Address Does Not Belong ... in a Preset

List” (Elements [1.3], [6.3], and [11.3]) ..o 91
2. Rationale to Combine Bellinson with Treuhaft and/or
Treuhaft/Sorenson ... 93
E. Secondary Considerations...............c..ooooiiiiiiiiii oo 97
XL CONCLUSION ..., 97

4 of 161

I, Anglos Keromytis, declare as follows:

L INTRODUCTION

1. I have been asked to submit this declaration on behalf of Unified Patents, LLC
(“Requester”) in connection with a request for ex parte reexamination of U.S. Patent 9,578,040
(“the ’040 Patent,” Ex. 1001) that issued from U.S. Application No. 15/572,514 (“the 514
Application”). Specifically, I have been retained as an independent expert consultant by Requester
to provide my opinions on the technology claimed in, and the patentability or unpatentability of
claims 1,4-6, and 9-11 of the 040 Patent (“the Challenged Claims”). Although I am being
compensated at my usual rate of $550 per hour for the time I spend on this matter, no part of my
compensation depends on the outcome of this proceeding, I have no financial interest in any of the
parties, and I have no other interest in this proceeding.
1. QUALIFICATIONS

2. I have extensive experience in the area of computer and network security, and have

been working in this field since 1993.

3. I am currently the John H. Weitnauer Technology Transfer Endowed Chair
Professor with the School of Electrical and Computer Engineering (ECE) at the Georgia Institute
of Technology (Georgia Tech). I am also a Georgia Research Alliance (GRA) Eminent Scholar,
and an elected Fellow of the IEEE and of the ACM, the two premier professional organizations in
the field of computing. I am also the co-founder and President of Voreas Laboratories Incorporated
and of Aether Argus Incorporated, two Atlanta, GA-based technology startups in the area of
cybersecurity, and a co-founder of Allure Security Technologies Inc., an MA-based technology

startup also in the area of cybersecurity.

4. Before joining Georgia Tech, I was Program Manager with the Defense Advanced
Research Projects Agency (DARPA), an R&D organization that is part of the Department of
Defense, from 2014 to 2018. During that time, I conceived, initiated, and managed 5 major
research programs (four of them in cybersecurity), and managed another 4, with a total budget of
almost $500M. For my work at DARPA, I received the Department of Defense Superior Public
Service Medal in 2018. Prior to DARPA, I served 1 year as Program Director with the National
Science Foundation (NSF), responsible for the Secure and Trustworthy Cyberspace (SaTC)

program, an $80M/year R&D effort that funds academic cybersecurity research across the country.

S of 161

Prior to this tour for public service, [was an Associate Professor of Computer Science at Columbia
University, as well as Director of the University’s Network Security Laboratory. Ijoined Columbia
in 2001 as an Assistant Professor, after receiving my M.Sc. and Ph.D. degrees in Computer
Science, both from the University of Pennsylvania. My Ph.D. dissertation work was on the topic
of secure access control for distributed systems and, in particular, on the management of trust in

distributed computer networks.

5. I received my B.Sc. in Computer Science from the University of Crete, in Greece,
in 1996. During my undergraduate studies, I worked as system administrator in the Computing
Center at the University of Crete. Following that, I worked as network engineer at the first
commercial Internet Service Provider ("ISP") in Greece, FORTHnet SA, where I was exposed to

many network security issues.

6. I have actively participated in the Internet Engineering Task Force (“IETF”), a
standards-setting body for the Internet, since 1995. In the late 1990s and early 2000s, my work
with the IETF was primarily within the Internet Protocol Security ("IPsec") Working Group. In
addition to contributing to the specification of the [Psec standards, I wrote the first implementation
of the Photuris key management protocol (now RFC 2522). T also contributed to the first open-
source implementation of the IKSAMP/IKE key management protocol for the open-source BSD
operating system (now RFC 2409), and developed the first such implementation for the Linux
operating system. My Linux implementation, named Pluto, was adopted by the National Institute
of Standards and Technology (“NIST”) in 1999. In addition, my implementation of IPsec for the
open-source BSD operating system is currently used by many companies and governments around
the world, and serves as the basis for several commercial products that employ cryptographic

communications.

7. In 1999, 1 architected and implemented the first open-source framework for
supporting hardware cryptographic accelerators. This framework is used in the open-source
OpenBSD, NetBSD, FreeBSD, and Linux operating systems. My work in implementing firewalls
and other cryptographic and network protocols has resulted in commercial systems and
publications in refereed technical conferences and academic journals. I served as Working Group
Secretary for the IETF IPsec Working Group (2003-2005) and as Security Area Advisor to the
IETF at large (2003-2008).

6 of 161

8. In my position at Columbia University, I worked with a large group of graduate and
postgraduate students in the area of cybersecurity. My past students now work in this field as
university professors, as technical researchers for research laboratories, or as engineers for
telecommunications companies. I have received federal, state, and corporate sponsorship to
conduct cybersecurity research from the Department of Defense, the National Security Agency,
the Defense Advanced Research Projects Agency (“DARPA”), the National Science Foundation,
the Department of Homeland Security, the Air Force, the Office for Naval Research, the Army
Research Office, the Department of the Interior, the National Reconnaissance Office, New York
State, Google, Intel, Cisco, and others. In my 20 years as a professor, I have received over 54
million dollars to support my research in cybersecurity. I also regularly teach courses on

cybersecurity, in addition to more general courses in computer science.

9. I have published over 250 technical papers in refereed journals, conferences, and
workshops, all of which are directed to various areas of cybersecurity. I have also authored a book,
coauthored another book, and contributed chapters for many other books that relate to
cybersecurity. Between 1999 and 2010, I have drafted or co-drafted eight standards documents
that were published as Request for Comments (“RFCs”). Several of these RFCs are directly related
to IP security, like the RFCs I discuss in this declaration. For example, RFC 6042 relates to
transport layer security; RFC 5708, RFC 2792, and RFC 2704 relate to key signature and encoding
for trust management; and RFC 3586 relates to IP security policy requirements. Additionally, I am
a coinventor on twelve issued U.S. patents, and have several other applications pending. Most of
these patents and pending applications are related to network and systems security. I have chaired
several international technical conferences and workshops in cybersecurity, including, for
example, the International Conference on Financial Cryptography and Data Security (FC), ACM
Computer and Communication Security (CCS), and the New Security Paradigms Workshop
(NSPW). T have also served in over eighty technical program committees for such events. From
2004-2010, I served as Associate Editor for the premier technical journal on cybersecurity-the
ACM Transactions on Information and Systems Security (TISSEC). Additionally, I have served
on several advisory workshops to the United States Government on cybersecurity, including,
among others, the Office of the Director of National Intelligence (ODNI)/National Security
Agency (NSA) Invitational Workshop on Computational Cybersecurity in Compromised
Environments (C3E) (2011), the Office of Naval Research (ONR) Workshop on Host Computer

7 of 161

Security (2010), the Intelligence Community Technical Exchange on Moving Target (2010),
Lockheed Martin Future Security Threats Workshop (2009), and the ARO/FSTC Workshop on
Insider Attack and Cyber Security.

10. My curriculum vitae, which is appended to the Request as Exhibit 1004, details my
background and technical qualifications.
IHI. MATERIALS CONSIDERED

11. In forming my opinions expressed in this declaration, I have considered, among
other things, the following documents. I understand the documents have been given the following

exhibit numbers in this proceeding:

Ex. 1001 U.S. Patent 9,587,040 to Guo et al. (“the 040 patent”)

Ex. 1002 File History of the 040 Patent

Ex. 1005 Leech et al., “SOCKS Protocol Version 5,” RFC 1928, March 1996
(“RFC 19287)

Ex. 1006 Koblas et al., “SOCKS,” 1992, UNIX Security Symposium III
Proceedings, 1992 (“Koblas”)

Ex. 1007 Kitamura, “A SOCKS-based [Pv6/IPv4 Gateway Mechanism,” RFC
3089, April 2001 (“RFC 3089”)

Ex. 1008 U.S. Patent Application Publication No. 2009/0157889 (“Treuhaft”)

Ex. 1009 U.S. Patent Application Publication No. 2006/0167871 (“Sorenson™)

Ex. 1010 U.S. Patent Application Publication No. 2004/0006621 (“Bellinson”)

Ex. 1011 Subramanian et al., “An empirical vulnerability remediation model,
IEEE International Conference on Wireless Communications,
Networking and Information Security, 2010 (“Subramanian”)

Ex. 1012 Excerpts from Microsoft Computer Dictionary, Fifth Edition, 2002

Ex. 1013 U.S. Patent 6,950,660 to Hsu et al. (“Hsu”)

Ex. 1014 U.S. Patent Application Publication No. 2009/0049539 to Halbedel et
al. (“Halbedel”)

12. In forming my opinions, I have also relied on my education and experience.
Iv. RELEVANT LEGAL STANDARDS

13. I am not an attorney. My analysis and opinions are based on my expertise in this
technical field, as well as the instructions I have been given by counsel for the legal standards

relating to patentability.

8 of 161

14. I have been informed by counsel for Requester that the following legal principles
may apply to analysis of patentability based on 35 U.S.C. §§ 102 for anticipation and 103 for
obviousness. I have also been informed that, in an ex partes reexamination proceeding such as this
proceeding, a patent claim is unpatentable if it is shown by a preponderance of the evidence that
the claim would have been anticipated by a prior art patent or publication, or obvious by one or
more properly combined prior art patents or publications.

A. Level of Ordinary SKkill in the Art

15. I have been instructed to consider patentability of the Challenged Claims through
the lens of a person of ordinary skill in the art (“POSA”) at the time of the claimed priority date of
the’040 Patent--June 30, 2012. I am familiar with the level of ordinary skill in the subject matter
of the 040 Patent in June 2012. Based on my review of the technology, and drawing on my own
experience in the field, my analysis below assumes that a POSA would have had a bachelor’s
degree in computer science or computer engineering and two years of experience in computer and
network security. In my opinion, however, less work experience may be compensated by a higher

level of education, such as a master’s degree, and vice versa.

16. Based on my qualifications discussed above, I qualified at least as a POSA of the
’040 Patent by June 30, 2012.

17. My analysis below considers how a POSA would have understood the references
listed above with respect to the Challenged Claims of the *040 Patent.

B. Anticipation

18. I have been informed a patent claim is unpatentable as anticipated under 35 U.S.C.
§ 102 if every limitation of the claimed invention is found in a single prior art reference--either
expressly or required through inherency--as arranged in the claim.

C. Obviousness

19. I have been informed that, even if a single prior art reference does not disclose each
and every element of a patent claim, the patent claim is still unpatentable as obvious under 35
U.S.C. § 103. It is my understanding that a claimed invention is unpatentable as obvious over a
combination of prior art references if the differences between the claimed invention and the prior

art are such that a POSA would have found the subject matter as a whole obvious.

9 of 161

20. I understand that obviousness is determined by evaluating: (1) the scope and
content of the prior art, (2) the differences between the prior art and the claim, (3) the level of
ordinary skill in the art, and (4) any secondary considerations of non-obviousness. To establish
obviousness based on a combination of the elements disclosed in the prior art, it is my
understanding that a challenger must provide a clear articulation of the reason(s) why the claimed
invention would have been obvious. I understand this articulation may, but does not necessarily,
require record evidence of an explicit teaching, suggestion, or motivation to combine the prior art
in the way recited in a patent claim. Rather, prior art may be combined based on an express
teaching, suggestion, or motivation from the prior art itself, or from a reasoned explanation of an

expert witness or some other rationale.

21. For example, it is my understanding that this articulation can come from a number
of rationales, which include but are not limited to (1) combining prior art elements according to
known methods to yield predictable results; (2) simple substitution of one known element for
another to obtain predictable results; (3) use of known technique to improve similar devices,
methods, or products in the same way; (4) applying a known technique to a known device, method,
or product ready for improvement to yield predictable results; (5) choosing from a finite number
of identified, predictable solutions, with a reasonable expectation of success, e.g., the combination
is “obvious to try”; (6) known work in one field of endeavor may prompt variations of it for use in
either the same field or a different one based on design incentives or other market forces if the
variations are predictable to one of ordinary skill in the art; and (7) some teaching, suggestion, or
motivation in the prior art that would have led one of ordinary skill to modify the prior art reference

or to combine prior art reference teachings to arrive at the claimed limitation.

22. I further understand that these rationales may be found explicitly or implicitly: (1)
in the prior art; (2) in the knowledge of those of ordinary skill in the art that certain references, or
disclosures in those references, are of special interest or importance in the field; or (3) from the
nature of the problem to be solved. Additionally, I understand that the legal determination of the
motivation to combine references allows recourse to logic, judgment, and common sense. In order
to resist the temptation to read into prior art the teachings of the invention in issue, however, it
should be apparent that the expert is not conflating “common sense” and what appears obvious in
hindsight. T understand that if the teachings of a prior art would lead a POSA to make a

modification that would render another prior art device inoperable, then such a modification may

16 of 161

not be obvious. I also understand that if a proposed modification would render the prior art
invention being modified unsatisfactory for its intended purpose, then there may be no suggestion

or motivation to make the proposed modification.

23. I understand that it may be improper to combine references where the references
teach away from their combination. [understand that a reference may be said to teach away when
a POSA, upon reading the reference, would be discouraged from following the path set out in the
reference, or would be led in a direction divergent from the path that was taken by the applicant.
In general, a reference teaches away if it suggests that the line of development flowing from the
reference’s disclosure is unlikely to be productive of the result sought by the patentee. I understand
that a reference teaches away, for example, if (1) the combination would produce a seemingly
inoperative device, or (2) the references leave the impression that the product would not have the
property sought by the patentee. I also understand, however, that a reference does not teach away
if it merely expresses a general preference for an alternative invention but does not criticize,
discredit, or otherwise discourage investigation into the invention claimed.

D. Claim Construction

24, Counsel has instructed me that, in an ex parte reexamination proceeding, the words
of a claim are to be given their broadest reasonable interpretation consistent with the specification.
Under this standard, I am instructed that the U.S. Patent and Trademark Office determines the
scope of claims in patent applications not solely on the basis of the claim language, but upon giving
claims their broadest reasonable construction in light of the specification as it would be interpreted
by a POSA. It is my understanding that, because applicant has the opportunity to amend the claims
during prosecution, giving a claim its broadest reasonable interpretation will reduce the possibility
that the claim, once issued, will be interpreted more broadly than justified. In my analysis, I have
applied this standard, as well as considered and applied any proposed constructions in the Request.

E. Substantial New Question of Patentability

25. Counsel has instructed me that the U.S. Patent and Trademark Office will order an
ex parte reexamination proceeding if the prior art patents or printed publications submitted with
the reexamination request raise a substantial new question of patentability with respect to the
challenged claims. I am told that a prior art patent or printed publication raises a substantial
question of patentability where there is a substantial likelihood that a reasonable examiner would

consider the prior art patent or printed publication important in deciding whether or not the claim

11 of 161

is patentable. If the prior art would be considered important, then [understand the examiner should
find a substantial new question of patentability so long as the same question of patentability has
not already been decided as to the claim in a final holding by the Office or a federal court in an
earlier review, or has not already been raised in another reexamination or other Office proceeding.
V. U.S. PATENT 9,578,040

A, Brief Overview of Deep Packet Inspection

26. The *040 Patent relates to a deep packet inspection (DPI) device. DPI is a type of
data processing that inspects packets being sent over a computer network, and may take actions
such as alerting, blocking, re-routing, or logging it accordingly. For example, in determining
whether to take action on a packet, a DPI device may examine the headers (e.g., IP and/or TCP or
UDP headers) and/or the data content of the packet.

B. Brief Overview of the Domain Name System

27. Certain aspects and functions of the DPI device of the 040 Patent, and the
corresponding components of the prior art references discussed below, touch on the Domain Name
System (DNS). DNS is the hierarchical naming system in which computers, services, or other
resources connected to the Internet have an address represented as both a human-readable domain
name (e.g., www.google.com) and a machine-readable Internet Protocol (IP) address (e.g.,
111.222.333.444). DNS has been a basic, essential component of the functionality of the Internet
since the late 1980s.

28. At a high level, the DNS includes a collection of name servers that maintain the
domain name hierarchy and provide translation services between the domain name and IP address
spaces. The name servers store address records mapping domain names to their corresponding IP
addresses. A client application—such as a web browser—needs an IP address to access a resource
connected to the Internet—such as a server hosting a website. Sometimes, however, the application
does not have the particular IP address of the resource to which access is sought. Instead, the
application may only have the corresponding domain name of that resource, as when a user enters

the domain name (e.g., www.google.com) into a web browser.

29. To obtain the IP address of the Internet resource, the client application sends a DNS
query to a name server in the DNS. The DNS query includes the domain name of the resource to
which the application seeks access and requests the name server to provide the corresponding IP

address. Upon receiving the DNS query, the name server “resolves,” or converts, the domain into

12 of 161

its corresponding IP address by looking up the address record for the domain name in the DNS
query, obtaining the corresponding IP address from the address record, and returning the IP address
to the client application in a DNS response. As this point, the client application can access the
Internet resource directly using the “resolved” IP address. This process of DNS resolution typically
occurs transparently to the user of the client.

C. Summary of the 040 Patent

30. The ’040 Patent is directed to a “a packet receiving method, a deep packet
inspection and system.” 040 Patent (Ex. 1001), 1:14-16. The deep packet inspection (DPI) device
receives a service request packet sent by a terminal device. /d., 3:27-28, FIG. 1 (step S101). The
service request packet contains two pieces of information: (1) a terminal domain name indicating
the terminal device; and (2) a server domain name indicating a server requested by the service
request. /d., 3:28-31. Upon receiving this service request, the DPI device determines whether to

discard the service request packet or establish the requested connection. See id., 3:66-5:46.

31 To do this, the DPI device first resolves (i.e., converts) the server domain name into
its corresponding IP address, e.g., using DNS. /d. 3:66-4:12, FIG. 1 (step S102). Having resolved
the IP address of the server to which the terminal device wants to connect, the DPI device now
determines whether that IP address is contained in a preset list of allowable addresses for the
terminal domain name. /d., 4:13-5:47, FIG. 3 (step S103). If the IP address is not on the list, the
DPI device discards (or denies) the service request, preventing the terminal device from accessing
the IP address of the server. /d. But if the IP address is on the list, the DPI device establishes the

requested connection. /d.

32. For the sake of reference, the claims for which reexamination is requested are
reproduced below. I understand that claims 1, 6, and 11 are independent claims, while the
remaining challenged claims depend directly or indirectly from these claims.

1. A packet receiving method, comprising:

receiving a service request packet sent by a terminal device, wherein the
service request packet carries a terminal domain name indicating the terminal
device and a server domain name indicating a service server required by the
service request packet sent by the terminal device;

resolving the received server domain name to obtain a service server
Internet protocol (IP) address; and

discarding the service request packet if the resolved service server IP
address does not belong to a preset service server IP address corresponding to
the received terminal domain name in a preset list, wherein in the preset list

13 of 161

the terminal domain name of each terminal device is correspondingly
provided with a plurality of accessible service server IP addresses under an
access authority of the terminal device.

4. The method according to claim 1, wherein, after the resolving the
received server domain name to obtain the service server Internet protocol
(IP) address, the method further comprises:

if the resolved service server IP address belongs to the preset service
server IP address corresponding to the received terminal domain name in
the preset list, establishing a connection between the terminal device and
the service server corresponding to the service server IP address, to enable
the service server to provide a service corresponding to the service request
of the terminal device to the terminal device.

5. The method according to claim 1, wherein, after the resolving the
received server domain name to obtain the service server Internet protocol
(IP) address, the method further comprises:

if the resolved service server IP address belongs to the preset service
server IP address corresponding to the received terminal domain name in
the preset list, determining a service type of the service request according
to the terminal domain name of the terminal device.

6. A deep packet inspection (DPI) device comprising a hardware processor
and a non-transitory computer readable storage medium including executable
instructions that, when executed by the processor perform a method
comprising:

receiving a service request packet sent by a terminal device, wherein the
service request packet carries a terminal domain name indicating the terminal
device and a server domain name indicating a service server required by the
service request packet sent by the terminal device;

resolving the server domain name to obtain a service server Internet
protocol (IP) address; and

discarding the packet if the service server IP address resolved does not
belong to a preset service server IP address corresponding to the received
terminal domain name in a preset list, wherein in the preset list the terminal
domain name of each terminal device is correspondingly provided with
accessible service server IP addresses under an access authority of the
terminal device.

9. The DPI device according to claim 6, wherein after the resolving the
received server domain name to obtain the service server Internet protocol
(IP) address, the method further comprises:

if the service server IP address resolved belongs to the preset service
server IP address corresponding to the received terminal domain name in
the preset list, establishing a connection between the terminal device and
the service server corresponding to the service server IP address, to enable
the service server to provide a service corresponding to the service request
of the terminal device to the terminal device.

14 of 161

10. The DPI device according to claim 6, wherein after the resolving
the received server domain name to obtain the service server Internet
protocol (IP) address, the method further comprises:

if the service server IP address resolved belongs to the preset service
server IP address corresponding to the received terminal domain name in
the preset list, determining a service type of the service request according
to the terminal domain name of the terminal device.

11. A system, comprising:

a deep packet inspection (DPI) device; and

a terminal device, configured to send a service request packet to the DPI
device, wherein the packet carries a terminal domain name indicating the
terminal device and a server domain name indicating a service server required
by the service request sent by the terminal device;

the DPI device having a hardware processor and a non-transitory computer
readable storage medium including executable instructions that, when
executed by the processor perform a method comprising:

receiving the service request packet sent by the terminal device;

resolving the server domain name received to obtain a service server
Internet protocol (IP) address; and

discarding the packet if the service server IP address resolved does not
belong to a preset service server IP address corresponding to the received
terminal domain name in a preset list, wherein in the preset list the terminal
domain name of each terminal device is correspondingly provided with
accessible service server IP addresses under an access authority of the
terminal device.

33. In general, the claims of the — .
] P devi 30 Poterminal 1 40
040 Patent relate to how the DPI device device et device
determines whether to discard a service request x-"" hd
packet received from a terminal device or to | s | . terminal |40
. .) termingt | AQ E
establish the connection based on two pieces of l?;?;?g e . dence “““““
information contained in the request—a T
FiG. 6

domain name of the terminal and a domain
name of the server. Figure 6 of the 040 patent, reproduced above, shows the system including the

DPI device 30 and one or more terminal devices 40.

34. Referring to the method shown in Figure 1 of the 040 Patent, reproduced below,
when a terminal device wants to connect to a server, it sends a service request packet to the DPI
device. Id., 3:27-28, 6:34-25, FIG. 3 (step S101); see also id., 6:34-38, FIG. 4 (step S204). The

service request packet contains two pieces of information: (1) a terminal domain name indicating

18 of 161

the terminal device; and (2) @ [4 DPI device receives a service request packel sent by a lerminal |
dovice, where the packet carries a terminal domain name indicating | 48101
the terminal device and a server domain name indicating a service |
server required by the service request sent by the terminal device ‘

server domain name

indicating a server requested

by the service request. 1 d., the DPI device resolves the received server domain name to obtain a L/" 5102
j ervice server IP address 3
3:28-31; see also id., 6:34-38, | *VIE RV T AGdiess

The terminal domain name is [fhe serviee server IP addross resolved by the DPI device does not
belong to the preset service server IP address corresponding to the . 19103
received terminal domain name in a preset list , the DPI device ™

the terminal device uses to | diseards the packel

identify itself to the DPI FIG. 1

simply “a unique identifier”

device from among “tens of thousands of terminal devices and service servers in the network.” /d.,
3:32-51. And, similarly, the server domain name is simply a unique identifier of the server that the

terminal device wishes to connect with. /d., 3:51-65.

35. Upon receiving the service request, the DPI device determines whether to discard
it or establish the requested connection based on the two pieces of information in the request—the

terminal domain name and server domain name. See id., 3:66-5:4, 6:39-50. It is a two-step process:

36. First, the DPI device resolves (i.e., converts) the server domain name into its
corresponding IP address. /d., 3:66-4:12, FIG. 1 (step S102); see also id., 6:39-41 (FIG. 3, step
S205). For example, using DNS, the DPI device may convert the server domain name (e.g.,

www.google.com) to its corresponding machine-readable IP address (e.g., 2.2.2.2). Id., 4:1-12.

37. Second, having resolved the IP address of the server to which the terminal device
wants to connect, the DPI device now determines whether that IP address is contained in a preset
list of accessible (i.e., allowable) addresses for the terminal domain name. /d., 4:13-5:47, FIG. 3
(step S103); see also id., 6:42-49, FIG. 3 (step S206). The “preset list is preset in the DPI device
in advance” as configuration information before the method in Figure 1 occurs.! The *040 Patent

gives an example of the preset list in Table 1 in the specification:

I In steps S201-203, the 040 Patent describes a process by which the DPI device
establishes the preset list before the process in Figure 1, and steps S204-S206 of Figure 3, occur.
1d., 5:54-6:30, FIG. 3 (steps S201-S203). But establishing the preset list relates to unchallenged

claims 2, 3, 7, and 8, so it is peripheral to the Request and I do not discuss it in detail here.

16 of 161

TABLE 1

Terminal domain name Preget service server IP address

1.1.1.1

www. hawet.com 22220

Id., 4:27-342. The left column lists terminal domain names of various terminal devices, and the
right column lists the corresponding preset server IP addresses that the terminal domain names
have authorization to access. /d. 4:35-5:24. For example, as highlighted above, a terminal device
at the domain name www.google.com has authorization to access the corresponding server IP
address 2.2.2.2 but not IP address 2.2.2.20. /d. A terminal device located at the terminal domain
name www.huawei.com, on the other hand, may access the corresponding server IP address

22220butnot2.2.22. 1d.

38. Continuing with step S103 of Figure 1, to determine whether to discard the IP
address resolved from the server domain name contained in the request, the DPI device checks
whether the preset list identifies the resolved IP address as an accessible IP address for the terminal
domain name contained in the request.’ Ex. 1001, 4:13-5:24; see also id., 6:42-57, FIG. 3 (step
S206). In Table 1 above, for example, if the request came from the terminal domain name

www.google.com, the DPI device would check whether the resolved IP address is listed in the

21 designate annotated figures with “*”

3 Perhaps stemming from translation of its original Chinese text to English, the 040 patent
uses somewhat strange language to describe the scenarios when the preset list does or does not list
the resolved IP address as an accessible IP address for a terminal domain name. Rather than state
that the IP address is or is not a preset IP address on the list, the 040 patent respectively states that
the resolved IP “belongs” or “does not belong” to a preset IP address on the list. See, e.g., Ex.
1001, Abstract, 2:1-4, 2:15-19, 2:36-38, 4:16-17, 5:5-9, 5:32-35, 6:42-53, 6:63-66, 7:64-67, 8:34-
38, 8:47-52, 8:55-59, 9:35-38, 10:12-15. In my opinion, A POSA have understood that, by “does
not belong” or “belongs” to a preset address on the list, the 040 patent respectively means that the

IP address is or is not listed as a preset address on the list.

17 of 161

right column as a corresponding accessible IP address for the terminal domain name

www.google.com. /d.

39. If the resolved IP address is not on the preset list, the DPI device discards the
request, preventing the terminal device from accessing the server at the resolved IP address. /d.,
4:13-5:17, FIG. 1 (step S103); see also id., 6:50-57, FIG. 3 (step S206). For example, if the
terminal domain name is www.google.com and the resolved IP address is 2.2.2.20, which is listed
an authorized IP address for the terminal domain www.huawei.com but not for www.google.com,
the DPI device would discard the request. /d., 4:36-5:24. But if the resolved IP address is on the
list for the terminal domain name—as the IP address 2.2.2.2 for the terminal domain name
www.google.com---the terminal device has authorization to connect to the server and thus the DPI

device establishes the connection. /d., 6:36-7:5, FIG. 3 (step S207); see also id., 5:17-24.

40. According to the 040 Patent, its technique of checking whether the resolved IP
address is on the preset list for the terminal domain name, before establishing the connection, helps
prevent a terminal device from fraudulently connecting to server by later changing its domain
name when it connects to the server. See id., 6:51-57, 8:39-46. Specifically, the 040 patent
identifies a purported problem in which a terminal device, after obtaining the IP address of a server
it is not authorized to access, changes its domain name in the host field of a connection request it
later sends to IP address. /d. According to the 040 Patent, servers typically do not check the host
field of a connection request to make sure the terminal device is authorized, and thus cannot
prevent an unauthorized connection if the terminal device changes its domain name after it has

already obtained the server’s IP address. See id., 1:26-48, 4:58-67, 5:10-17.

41. The 040 Patent gives an example in which a terminal device with the domain name
www.google.com gains free access to a charged website—which the terminal domain name
www.huawei.com has authorization to access but the terminal domain name www.google.com
does not—by changing its domain name from www.google.com to www huawei.com after
obtaining the IP address of the server hosting the charged website. See id., 1:26-48, 4:35-67, 5:5-
17, 8:39-46. As shown in Figure 2, after obtaining the resolved IP address of the charged website,
the terminal device alters its domain name from www.google.com to www.huawei.com in the host
field of an HTTP GET request it sends to the resolved IP address. /d. 4:43-67, FIG. 2. According
to the 040 Patent, by checking that the preset list contains the IP address of the server as authorized

18 of 161

for the terminal domain name, the DPI device can discard the request before the terminal device
obtains the IP address of the server and attempts an unauthorized connection. See, e.g., 6:51-57,
8:39-46.

D. Prosecution history

42. Although discussed in the Request, I provide a brief summary of the prosecution
history (Exhibit 1002) of the 040 Patent for context. I understand that the examiner issued one
office action before allowing the application, rejecting the claims as obvious over U.S. Patent
6,950,660 to Hsu et al. (“Hsu,” Ex. 1013) in view of U.S. Patent Application Publication No.
2009/0049539 to Halbedel et al. (“Halbedel,” Ex. 1014). Ex. 1002, 92-103.

43. As to the independent claims, I understand the examiner found that Hsu did not
disclose “discarding the service request packet if the resolved service server IP address does not
belong to a preset service server IP address corresponding to the received terminal domain name
in a preset list,” as recited in the independent claims, but that Halbedel did. /d., 98. The examiner
cited paragraph [0015] of Halbedel as disclosing this element. /d. In that passage, Halbedel
explains that a hub maintains an access control list storing (1) a set of approved usernames and
passwords authorized to access a particular server, or alternatively, (2) a set of valid IP addresses

from which the server may be accessed. Ex. 1014, § [0015].

44, In response to the rejections, I understand the applicant amended the independent
claims to add to the “discarding” step the final “wherein” clause regarding the preset list. /d., 1002,
42-47. For reference, the amendment to independent claim 1 is reproduced below:

1. (Currently Amended) A packet receiving method, comprising:

receiving a service request packet sent by a terminal device, wherein the service
request packet carries a terminal domain name indicating the terminal device and a
server domain name indicating a service server required by the service request
packet sent by the terminal device;

resolving the received server domain name to obtain a service server Internet
protocol (IP) address; and

discarding the service request packet if the resolved service server IP address
does not belong to a preset service server IP address corresponding to the received
terminal domain name in a preset list, wherein in the preset list the terminal domain
name of each terminal device is correspondingly provided with a plurality of
accessible service server IP addresses under an access authority of the terminal
device.

1d., 43. Additionally, in the remarks, the applicant argued that the claimed preset list differed from

19 of 161

Halbedel’s control list because it stored different information:

Halbedel merely discloses a control list that stores usernames, passwords, and
user’s IP addresses, in order to determine whether to grant the user access [to]
the particular application server.

By contrast, as defined in amended claim 1, the preset list provides the terminal
domain name of each terminal device and a plurality of corresponding accessible
service server IP addresses under an access authority of the terminal device, so
that after receiving a service request packet from the terminal device, resolving the
domain name of a server carried in the service request packet, and obtaining IP
addresses of the server, it can be determined whether the server is under access
authority of the terminal device, by determining whether the IP address of the
server resolved is in the preset list corresponding to the terminal’s domain name.

Id_(emphasis in original)*. Following these amendments and arguments, I understand the examiner
allowed the application, citing the “discarding” step with the added “wherein” clause in the

examiner’s statement of reasons for allowance. /d., 24-31.

45. As T explain below, the prior art demonstrates that using a preset list, containing the
terminal domain name of each terminal device and a plurality of corresponding authorized service
server IP addresses, to control terminal device access to server IP addresses was well known years
before the time of the 040 Patent. For example, as explained below, in the SOCKS protocol
(Exhibits 1005-1007) developed in the mid-1990s, a SOCKS proxy server used a Configuration
List mapping SOCKS client terminal domain names to corresponding accessible service IP
addresses in determining whether to allow or deny incoming connections requests from terminal
devices. Additionally, Treuhaft (Exhibit 1008) describes a system in which a DNS name server
maintains subscriber information for each user or subscriber of the system identifying
corresponding authorized/unauthorized server IP addresses that the user or subscriber is
authorized/unauthorized to access. Upon receiving DNS queries from those users or subscribers,
the DNS name server responds to the DNS queries accordingly based on the corresponding users’
or subscribers’ subscriber information.

VI. CLAIM CONSTRUCTION
A, “discarding the service request packet” (independent claims 1, 6, and 11)
46. Under the broadest reasonable interpretation standard, in my opinion, a POSA

would have understood this language to include preventing unauthorized access to the resolved

* In this Declaration, emphasis is added unless otherwise specified.

20 0f 161

service server IP address. The claim language itself supports this understanding by explaining that
the service request packet received from the terminal device—and containing the server domain
name from which the IP address was resolved—is discarded if the resolved IP address does not
belong to (i.e., is not) a preset address in the preset list. See Ex. 1001, 10:43-48. In other words,
because the preset list does not list the resolved IP address referenced in the service request packet
as a preset (e.g., authorized) IP address, the service request packet is discarded and the requested

connection is not granted, preventing the terminal device from accessing the resolved IP address.

47. Additionally, dependent claims 4 and 9 recite establishing the connection if the
resolved service server IP address belongs to (i.e., is) a preset address on the list. Conversely, this
suggests that the connection is not established if the resolved IP address is not a preset address on
the list (i.e., the DPI device presents access). It follows that, preventing access when the resolved
IP address is not on the list falls within the scope of independent claim 1, from which claims 4 and
9 depend. The specification of the 040 Patent also supports this understanding, explaining that if
the resolved IP address is not on the preset list, “then the packet is considered to be abnormal, and

the abnormal packet is discarded so as to prevent the terminal device A from successfully accessing

the charged service through altering the packet without authorization[.]” Ex. 1001, 5:10-17. In
other words, the service request is determined to be abnormal and discarded, preventing the
terminal device from accessing the IP address, if the resolved IP address is not on the list.

B. “if the resolved service server IP address does not belong to a preset service

server IP address ... in a preset list” (independent claims 1, 6, and 11)
“if the resolved service server IP address belongs to the preset service server IP
address ... in the preset list” (dependent claims 4 and 5)

48. To the extent these phrases can be understood, I believe a POSA would have
understood them to mean “if the resolved service server IP address is not a preset service server
IP address ... in a preset list” and “if the resolved service server IP address is a preset service
server IP address ... in the preset list,” respectively. Perhaps stemming from translation of its
original Chinese text to English, the 040 patent uses odd language to describe the scenarios in
which the preset list does not or does not list the resolved IP address as a preset IP address for a
terminal domain name. Rather than state that the IP address is or is not a preset address on the list,
the 040 patent respectively states that the resolved IP “belongs” or “does not belong” to a preset

address on the list. See, e.g., Ex. 1001, Abstract, 2:1-4, 2:15-19, 2:36-38, 4:16-17, 5:5-9, 5:32-35,

21 0f 161

6:42-53, 6:63-66, 7:64-67, 8:34-38, 8:47-52, 8:55-59, 9:35-38, 10:12-15. From the context,
however, it is my opinion that a POSA would have understood that the 040 patent means the
resolved IP address is not a preset address on the preset list when stating the resolved IP address
“does not belong to a preset service server IP address ... in a preset list,” as recited in independent
claims 1, 6, and 11. And, by the same token, I believe a POSA would have understood the *040
Patent means the resolved IP address is a preset address on the preset list when stating the resolved
IP address “belongs to the preset server IP address ... in the preset list.”
VII. PRIOR ART PATENTS AND PRINTED PUBLICATIONS

49. In this Declaration I rely on the following references. I have been instructed by

counsel to assume that each of these references legally qualifies as prior art against the *040 Patent.

Exhibit 1005, Leech et al., “SOCKS Protocol Version 5,” RFC 1928, March 1996 (“RFC
1928”)

50. RFC 1928 was published in 1996 in the RFC (Request for Comment) series. Ex.
1005, 1. Originally established in 1968, the RFC series edits and publishes technical and
organizational documents about the Internet, including the specifications and policy documents
produced by the Internet Engineering Task Force (IETF), the Internet Research Task Force (IRTF),
the Internet Architecture Board (IAB), and Independent Submissions. As I explain above in the
section regarding my background and qualifications, I have personal experience with RFC series
because I have authored several published RFCs through my involvement in the IETF. Thus, [am
quite familiar with the process of drafting a proposed RFC, submitting it to the RFC Editor for
review, and seeing it published. Since long before the time of the 040 Patent, the RFC series
constitutes a widely known and used resource for practitioners in the area of computer and network
security (and, more broadly, Internet protocol standards). POSAs were aware of the RFC series
and consulted its publications (such as RFC 1928 and RFC 3089) in the ordinary course of their

work.

Exhibit 1006, Koblas et al., “SOCKS,” 1992, UNIX Security Symposium III Proceedings,
1992 (*“Koblas”)

51. Published in 1992, Koblas is an article presented at the USENIX UNIX Security
Symposium III conference, sponsored by the USENIX Association in cooperation with the

Computer Emergency Response Team (CERT), on September 14-16, 1992 in Baltimore, MD.

22 of 161

Based on my experience in the field of computer and network security, POSAs are also familiar
with the USENIX Association and CERT and would have attended this conference at which

Koblas was presented.

Exhibit 1007, Kitamura, “A SOCKS-based IPv6/IPv4 Gateway Mechanism,” RFC 3089,
April 2001 (“RFC 3089”)

52. RFC 3089 is another document in the RFC series, published in 2001.

Exhibit 1008, U.S. Patent Application Publication No. 2009/0157889 (“Treuhaft”)
53. Treuhaft is a U.S. patent application in the area of network security filed in 2008
and published in 2009. Ex. 1008, 1.

Exhibit 1009, U.S. Patent Application Publication No. 2006/0167871 (“Sorenson”)
54. Sorenson is a U.S. patent application in the area of network security filed in 2004

and published in 2006. Ex. 1009, 1.

Exhibit 1010, U.S. Patent Application Publication No. 2004/0006621 (“Bellinson™)

55. Bellinson is a U.S. patent application in the area of network security filed in 2002
and published in 2004. Ex. 1010, 1.
Exhibit 1011, Subramanian et al., “An empirical vulnerability remediation model, IEEE

International Conference on Wireless Communications, Networking and Information
Security, 2010 (“Subramanian”)

56. Subramanian is an article presented at the “2010 IEEE International Conference on
Wireless Communications, Networking and Information Security,” a conference held by Institute
of Electrical and Electronics Engineers (IEEE) in June 2010 in Beijing, China. I am told that,
following the conference, Subramanian was uploaded to the IEEE Xplore digital library on August
5,2010. Long before the 040 Patent, POSAs were familiar with IEEE, attended IEEE conferences,
and consulted IEEE publications in the ordinary course of their work. Thus, in my opinion, POSAs
would have attended the conference at which Subramanian was presented. And, if interested in the

subject matter or author, POSAs could have obtained Subramanian in Xplore.

57. I'understand that none of the references I rely upon in this Declaration was cited or

considered during the prosecution of the 040 Patent.

23 0f 161

VIII. GROUND 1: RFC 1928 IN VIEW OF KOBLAS AND RFC 3089 (THE
“SOCKS REFERENCES”) PRESENTS A SUBSTANTIAL NEW QUESTION
OF PATENTABILITY

58. RFC 1928, Koblas, and RFC 3089 all relate to the SOCKS protocol—an Internet
protocol for exchanging network packets over TCP/IP between a client and server through a proxy
server, called a SOCKS proxy server. See Exs. 1005, 1006, 1007. As they all refer to the same
protocol, in my opinion, POSAs would have considered these together when considering whether
and how to use a system like SOCKS. Accordingly, in this Declaration I sometimes refer to RFC

1928, Koblas, and RFC 3089 collectively as “the SOCKS references.”

59. In my opinion, the SOCKS references raise a substantial new question of
patentability as to claims 1, 4-6, and 9-11 because their a patent examiner would have considered
their teachings to be important in deciding whether the Challenged Claims are patentable. For
example, as discussed below here and in the Detailed Discussion section, it is my opinion that the
SOCKS references, when considered as an ordered combination, teach each limitation of the
claims, including the supposedly novel feature that led the examiner to allow the claims:
“discarding the service request packet if the resolved service server IP address does not belong to
a preset service server IP address corresponding to the received terminal domain name in a preset
list, wherein in the preset list the terminal domain name of each terminal device is correspondingly
provided with a plurality of accessible service server IP addresses under an access authority of the
terminal device.”

A. Overview of the SOCKS References

1. RFC 1928

60. SOCKS is an Internet protocol that exchanges network packets over TCP/IP
between a client and server through a proxy server, called a SOCKS proxy server. RFC 1928
describes SOCKS Protocol Version 5 and aims to “provide a general framework ... to
transparently and securely traverse a firewall” in SOCKS®. Ex. 1005, 1; see also id., 2 (“The

[SOCKS] protocol described here is designed to provide a framework for client-server applications

> In SOCKS, the SOCKS proxy server is sometimes called a “firewall”. I refer to this
SOCKS firewall component as the “SOCKS server” or “SOCKS proxy server,” and use these

terms interchangeably throughout the Declaration.

24 of 161

in both the TCP and UDP domains to conveniently and securely use the services of a network

firewall.”).

61. When a SOCKS client wishes to connect to a server or other object behind the
SOCKS proxy server, it sends a connection request to the SOCKS proxy server:

When a TCP-based client wishes to establish a connection to an object that is
reachable only via a firewall (such determination is left up to the implementation),
it must open a TCP connection to the appropriate SOCKS port on the SOCKS
server system. The SOCKS service is conventionally located on TCP port 1080. If
the connection request succeeds, the client enters a negotiation for the
authentication method to be used, authenticates with the chosen method, then sends
a relay request. The SOCKS server evaluates the request, and either establishes the
appropriate connection or denies it.

1d., 2-3; see also id., 4 (“Once the method-dependent subnegotiation has completed, the client

sends the request details.””). The SOCKS connection request has the following form:

Id., 4*. As highlighted in the Figure above, the SOCKS request has a DST.ADDR field, which
contains the “desired destination address” sought by the SOCKS client. /d. The preceding ATYP
field specifies the “address type of [the] following address” contained in the DST.ADDR field, id.,
4, which can take the form of “a fully-qualified domain name,” id., 5. Additionally, the SOCKS

requests contains a source IP address of the SOCKS client because the connection request is sent

25 0f 161

over TCP/IP, which requires all packets to specify the source and destination IP addresses.

62. RFC 1928 teaches that “The SOCKS server evaluates the request, and either
establishes the appropriate connection or denies it.” /d., 3. But because RFC 1928 focuses on
laying out a general framework and protocol format for interacting with a SOCKS proxy server,
RFC 1928 itself does not expressly describe the mechanism for evaluating connection requests.

2. Koblas

63. Koblas uses SOCKS to address “[o]ne of the more important [security] issues”
when connecting to a network over the Internet: “intruders attempting to gain access to local
hosts.” Ex. 1006, 3°. Koblas proposes “several strategies which can be used to configure an

Internet connection to prevent unwanted intrusion” using the SOCKS protocol. /d., 3.

64. In one strategy, Koblas teaches that the SOCKS server uses a “Configuration File”
to allow or deny the connection request. The Configuration File contains an entry for each SOCKS
client source identifying corresponding “permit” or “deny” destination addresses to which the
SOCKS server will respectively permit or deny connections requested by the SOCKS client
source:

The configuration file 1s located on the firewall host and 15 used by sockd
when determining whether to accept or deny requests. The file 15 parsed

tfrom beginning to end. with the first fully matching line returning the
accessthility. The svntax of the lines n this file 1s as follows:

{permut | deny} "«’W% <mask™> [<<dest-host> <masl>

[<operator> <port>|] §

=
S
&

L
&

%
%,

s

A
it

XX

ARV PN R
REENNENE IR

et

Lines begin with either ‘permit’ or ‘deny’ followimg which are either 2, 4,
or 6 fields, contaming host address and mask pairs for source and
destination, as well as a boolean operator and a service port.

Id, 7*

% For ease of reference, I cite the PDF page number of Exhibit 1006.

26 of 161

65. As highlighted above, in the SOCKS Configuration File, the <source-host> field
contains the host address of the SOCKS client source (claimed terminal device) and the
corresponding <dest-host> field in the entry contains the address of the corresponding destination
server (claimed corresponding preset service server IP address). /d. Depending on which value the
{permit | deny} field contains, the SOCKS server will respectively permit or deny the SOCKS
client source named in the <source-host> field to connect to the corresponding destination server
address in the <dest-host> field. Id., 1006, 7. Additionally, Koblas explains that “[h]ost addresses

and services may be specified either by name or number,” meaning SOCKS supports listing the

addresses in the <source-host> and <dest-host> fields as a domain name or an IP address. /d. 1006,

8.

60. In Figure 5, Koblas “shows an example of how the lines in a configuration file
might appear”:
FIGURE 5, A Sample Configuration File

§
£ Peny all host to avery host whodls assrvice
#

deny 0.0.0.0 255.285.285.285 0.0.0.0 255.23585.2585.288 eq whols
#
Let lloyd.mips.com only use finger service to sgli.com

permit illoyd. mips.com:G.
! g

~

S
deny lleyd.migs.com 0.0,
§
£ Allow all hosts on the 136,82 nstwork acgesss to the world
#
permit 130.62.0.0 0.0.355.353%

8.80.0.0 ey fingey
8.0.0

%.

Deny all hosts which do not match anyrthing in this file
§ {(i.e. All hosts coming in from the Internat)

#

Id., 8. In this Sample Configuration file, the SOCKS server permits a request from the source
device with the domain name lloyd. mips.com to connect to the corresponding destination sgi.com,
and denies requested connections “which do not match anything in this file.” /d. Although shown
as a domain name in this example, the server destination address sgi.com “may be specified either

by name or number,” so the IP address of sgi.com could be used instead. /d., 8.

27 of 161

3. RFC 3089
67. RFC 3089 explains that, “[i]n all communication applications, it is [] necessary to
obtain destination IP address information to start a communication.” Ex. 1007, 4. To that end RFC
3089 describes a process by which the SOCKS server uses DNS to resolve the fully qualified
domain name (FQDN) of the destination node (Destination D) into its “real IP address” when
receiving a connection request from the source node (Client C):

The detailed internal procedure of the "DNS name resolving delegation" and

address mapping management related issues are described as follows.

1. An application on the source node (Client C) tries to get the IP address information of
the destination node (Destination D) by calling the DNS name resolving function (e.g.,
gethostbyname()). At this time, the logical host name ("FQDN") information of the
Destination D is passed to the application's *Socks Lib* as an argument of called APIs.

2. Sincethe *Socks Lib* has replaced such DNS name resolving APIs, the real DNS name
resolving APIs is not called here. The argued "FQDN" information is merely registered
into a mapping table in *Socks Lib*, and a "fake IP" address is selected as information
that is replied to the application from a reserved special IP address space that is never
used in real communications (e.g., 0.0.0.x). The address family type of the "fake IP"
address must be suitable for requests called by the applications. Namely, it must belong
to the same address family of the Client C, even if the address family of the Destination
D is different from it. After the selected "fake IP" address is registered into the mapping
table as a pair with the "FQDN", it is replied to the application.

3. The application receives the "fake IP" address, and prepares a "socket". The "fake IP"
address information is used as an element of the "socket". The application calls socket
APIs (e.g., connect()) to start a communication. The "socket" is used as an argument of
the communication APIs (e.g., to send and receive data).

4. Since the *Socks Lib* has replaced such socket APIs, the real socket function is not
called. The IP address information of the argued socket is checked. If the address
belongs to the special address space for the fake address, the matched registered
"FQDN" information of the "fake IP" address is obtained from the mapping table.

5. The "FQDN" information is transferred to the *Gateway* on the relay server (Gateway
G) by using the SOCKS command that is matched to the called socket APIs. (e.g., for
connect(), the CONNECT command is used.)

6. Finally, the real DNS name resolving API (e.g., getaddrinfo()) is called at the
*Gateway ™. At this time, the received "FQDN" information via the SOCKS protocol is
used as an argument of the called APIs.

7. The *Gateway™* obtains the "real IP" address from a DNS server, and creates a "socket".
The "real IP" address information is used as an element of the "socket".

8. The *Gateway* calls socket APIs (e.g., connect()) to communicate with the Destination
D. The "socket" is used as an argument of the APIs.

Id., 5-6.

28 of 161

B. The Combination of RFC 1928, Koblas, and RFC 3089 Presents a
Substantial New Question of Patentability

68. In my opinion, the combination of the SOCKS references presents a substantial
new question of patentability with respect to the 040 Patent. SOCKS, as described in RFC 1928,
is similar to the claimed invention, in part because it uses a SOCKS proxy server in a firewall-like
role similar to the DPI device in the 040 Patent. Like the DPI device in the ’040 Patent, the SOCKS
server receives a connection request from a source host device seeking access to a destination host
server. The SOCKS connection request, like the service request in the 040 Patent, contains two
pieces of information: (1) an identifier of the source device; and (2) a domain name of the
destination server. Both the SOCKS server and the DPI device resolve the domain name of the
destination server into its corresponding IP address. And, like the DPI device, RFC 1928 teaches
that the SOCKS server evaluates the connection request and denies it if the request is not

appropriate.

69. Although RFC 1928 does not expressly describe the mechanism to evaluate the
connection request, Koblas discloses that the SOCKS server uses a Configuration File for this
purpose. In my opinion, the SOCKS Configuration File goes directly to the purported point of
novelty of the 040 Patent and the reason the examiner allowed the Challenged Claims. Namely,
like the “preset list” of the 040 Patent, the Configuration File of Koblas lists the domain name of
each source device and corresponding accessible server IP addresses under an access authority of
the source device. When a connection request is received, the SOCKS server applies the
Configuration File to determine whether to allow or deny the connection. If the Configuration File
lists the IP address of the destination server as an allowed address for the domain name of the
source host making the connection request, the SOCKS server allows the connection. If not,
however, the SOCKS server denies the connection. As explained below in the Detailed Discussion
section for the specific claim elements pertinent to the combination, a POSA would have been

motivated to combine the SOCKS references and had a reasonable expectation in doing so.

Accordingly, as described above and below in the Detailed Application section, it is my
opinion that the SOCKS references disclose, or at least render obvious, “discarding the service
request packet if the resolved service server IP address does not belong to a preset service server
IP address corresponding to the received terminal domain name in a preset list, wherein in the

preset list the terminal domain name of each terminal device is correspondingly provided with a

29 of 161

plurality of accessible service server IP addresses under an access authority of the terminal device,”
as recited by independent claims 1, 6, and 11. /d. Thus, the SOCKS references present a substantial
new question of patentability with respect to the Challenged Claims.

IX. GROUNDS 2-5: TREUHAFT, TREUHAFT IN VIEW OF SORENSON, AND
TREUHAFT/SORENSON IN VIEW OF BELLINSON PRESENT
SUBSTANTIAL NEW QUESTIONS OF PATENTABILITY

A. Overview of the References

70. As explained below, Treuhaft, Treuhaft in view of Sorenson, and
Treuhaft/Sorenson in view of Bellinson present substantial new questions of patentability as to
claims 1, 4-6, and 9-11 because a reasonable examiner would consider their teachings to be
important in deciding whether or not the 040 Patent claims are patentable. For example, as
discussed below here and in the Detailed Discussion section, Treuhaft, Treuhaft in view of
Sorenson, and Treuhaft/Sorenson in view of Bellinson, when considered as an ordered
combination, teach each limitation of the claims, including the purportedly novel feature that led
the examiner to allow the claims: “discarding the service request packet if the resolved service
server IP address does not belong to a preset service server IP address corresponding to the
received terminal domain name in a preset list, wherein in the preset list the terminal domain name
of each terminal device is correspondingly provided with a plurality of accessible service server
IP addresses under an access authority of the terminal device.”

1. Treuhaft

71. Treuhaft describes a system in which a DNS name server 120 of Treuhaft maintains
subscriber information 208 for various users or subscribers of the system. See Ex. 1008, 4 [0028],
[0029], [0034], [0036], [0039], [0054], [0060], [0064], FIG. 2 (subscriber information 280). “The
subscriber information can include preferences or other settings for how a user or subscriber
wishes to control domain name resolution within the DNS resolution features.” Id., § [0060]. “For
example, a user or subscriber may establish subscriber information that instructs DNS nameserver
120 to alter responses to DNS requests that are associated with adult web sites, potential phishing
or pharming sites, and other sites deemed inappropriate by the user or containing material illegal
in the country of the user.” /d., q [0028]. Thus, the DNS name server 120 has a similar role to the
SOCKS server and the DPI device of the 040 patent.

30 of 161

DNg

120

NAMESERVER

VAN

COMMLAN
PRD?;?SOR INTERFACE
'““ 230
MEMORY
220 WAN INTERFAGE
240
DNS SERVER PROGRAM
pasiy]
250
OPTIONS FOR L
RESOLVING DNG
QUERIES
- V
Treuhaft, FIG. 2%

72. In Treuhaft, the DNS name server 120 receives a DNS query from a host device
105 seeking an IP address to connect to a server. Id., 19 [0063], [0064], FIG. 5A (step 525), FIG.

5B (step 530). The DNS query contains two pieces of information (1) a domain name for a URL

of the server; and (2) “control information” identifying the host device 105:

31 of 161

%

R/

AL LIS IS 7Y,

%

T

S e 5

v 7

s G A 7

%

5. &

s v

b A R A A A A R A A A

'k\\ 000 200 DD, DY DT DN DT DN DN DN NN NN RN N

Treuhaft, FIG. 4%

73. As highlighted in Figure 4 above, the DNS query 400 includes a NAME field
containing the domain name of the URL the host device 105 seeks to access. Id., 9 [0054].
Additionally, before the host device 105 sends the DNS query to name server 102, “the DNS query
is modified with control information.” /d., § [0058], FIG. SA (step 520); see also id., 9§ [0067]
(“control information may be encoded into an individual DNS query that enables a DNS
nameserver to identify DNS resolution options, filters, or features to apply when resolving the
individual DNS query”). “The control information may specify ... a user or subscriber identifier,

a device identifier, or the like.” Id., § [0036].

74. Upon receiving the DNS query, the “DNS nameserver 120 determines how to
respond to host device 105” by applying the subscriber information 280 for the particular user or

subscriber. Id., 9] [0032]; see also id., Y [0028], [0029], [0034], [0036], [0039], [0054], [0060],

32 of 161

[0064]. Specifically, the DNS name server 120 parses the control information in the DNS query to
identify the particular user or subscriber associated with the DNS query, and then retrieves that
user or subscriber’s subscriber information 280. /d., § [0064], FIG. 5B (step 353); see also id.,
9 [0060].

75. Using the user or subscriber’s subscription information 280, the DNS name server
120 “make[s] a decision whether to use the corresponding IP address or another IP address when
generating a DNS response based on applying one or more DNS resolution options or features”.
1d. 9 [0065]. For example, rather than return the resolved IP address requested by the host device
105, “DNS nameserver 120 may determine to substitute the IP address of a website that provides
information why the domain name is being block[ed], forwarded, filtered, or otherwise includes
material the user has expressed a desire to control.” Ex. 1008, § [0065], FIG. 5B (steps 540). Then,
the DNS name server 120 generates a DNS response “substitut[ing] [the] IP address based on
applying one or more of the available DNS resolution options, filters, or features” and sends the
DNS response with the substituted IP address to the host device 105. Ex. 1008, § [0066], FIG. 5B
(steps 545, 550).

2. Sorenson

76. Sorenson discloses a “system and

method for blocking access by a network device to

specific network resources by comparing a specific

resource identifier against entries in a blacklist and

facilitating a connection accordingly.” Ex. 1009, A Py £S5
Abstract. In Sorenson, the system receives “a call e 610

request for the establishment of a communication

i i A i

session between IP device 12 and associated service . m“{—‘l
L

20. 1d., § [0027]; see also id., 99 [0031], [0032]. The ﬁf?}ﬁfné'

call request “include[s] a specific identifier such as o1t

an entered IP address, domain name, or
conventional phone number or name resolved into

one of an IP address or domain name.” /d., [0031]. 2
|
3 -

77. Before granting the call request, the

SR 1

§ e

system of Sorenson performs a two-stage blacklist check to determine whether to establish the

33 of 161

connection or discard the request. See id., 9 [0031]-[0032], FIG. 6. As shown in Figure 2 of
Sorenson reproduced to above, the blacklist 500 contains both blacklisted domain name names

512 and blacklisted IP addresses 510. Id. 1009, 4 [0028], FIG. 2.

78. First, as highlighted in step 610 of Figure 6 reproduced below, Sorenson performs

-

a domain-name-blacklist check by “compar[ing] 610 the domain name against the blacklist 500

(FIG. 2) to determine 612 if the domain name is located within the blacklist 500 = .” Id., [0031].
“If the domain name utilized for initiating the call is located with the blacklist 500 ", then the IP

device denies 618 the completion of the call and may alternatively notify the user of such denial.”

Id. But “[i]f the domain name is not on the blacklist, then” Sorenson resolves the address and

performs a second, IP-address-blacklist check before establishing the connection. /d.

79. Specifically, Sorenson “resolves ... the domain name into an IP address for further
comparison” in step 614, id., and then “compares ... the IP address against the blacklist 500°” in
step 616, id., 4 [0032]. If the IP address is located within the blacklist 500, Sorenson denies the
connection. /d., § [0032], FIG. 6 (step 618). If the IP address is not found on the blacklist 500°,
however, Sorenson establishes the connection. /d., § [0032], FIG. 6 (step 622).

34 of 161

QEWCE (&u_ MI‘}W bos

I‘*‘ﬁf R ACTIATES [p PEVICE b 40
| cALLgeRges T
NARE DISLED .~ ' T A
= TP PELICE compARES
L pasis Al MAME AgAmsT |
g\ BLACELIST)
; &l
v . ,-‘Iis}ingl\} *,v""
bt WA N
LI wt N F 0 el

L) DEUNE REotuls)

] DAL AME TR
P ADKEESS |
I

M
»\\\

} LB
!;r« PEVIEE AL

zséfu.. cmﬂ&'ﬂw

Ceng

<

Sorenson, FIG. 6*

3. Bellinson
80.

Similar to 040 Patent, SOCKS, Treuhaft, and Sorenson, Bellinson discloses “a

system and method for controlling whether a user may access certain Internet sites” by applying

“an allow-block list” to “determine[] whether the URL is referenced on the allow-block list and,

if so, allow[] or disallow[] access to the site referenced by the URL accordingly.” Ex. 1010,

Abstract. In Bellinson, “[t]he allow-block list is a listing of specific site identifiers that the user is

expressly authorized to view or prohibited from viewing.” Id., § [0020]; see also id., §f [0009]

38 of 161

(“The allow-block list is a file containing a listing of specific URLs that the user is expressly

authorized to view or expressly prohibited from viewing.”).

81. As shown in Figure
3, reproduced to the right, in step

244 Bellinson’s system receives an

Liser logs in to oparating system i 2 40

| Obisain settings for user: aflow-§, .
\ 242

.. binck fist
access request containing “a —
specified site identifier that FIG. 3 5Emer;i't:‘i;@; o
references an Internet site. T |
Examples of such site identifiers Yes
include designators such as 248

www.microsoft.com but could _ {""Cache

262 | Refresher
also include an Internet Protocol T
(IP) address.” Id., [0049], FIG. 3. To— |
In step 246 of Figure 3, Bellinson inm?reter L
“determines whether the site 2ij\1 | ~ o
identifier is on the allow-block list ;
at step 246. Id. “If the site identifier 252\1\ e
is referenced on the allow-block \D'i"v """" .
list,” in step 248 Bellinson o | wi'ﬁ‘iﬁ;e\
“determine[s] whether the site ‘ 284
identifier is designated as blocked e \

on the allow-block list.” /d. “If the site identifier is [designated as] blocked,” Bellinson blocks the
connection. /d., § [0050]. Otherwise, Bellinson allows the connection. /d., § [0051].

B. Treuhaft, Treuhaft in view of Sorenson, and Treuhaft/Sorenson in view of
Bellinson Present Substantial New Questions of Patentability

82. In my opinion, combinations of Treuhaft, Treuhaft and Sorenson, and
Treuhaft/Sorenson in view of Bellinson raise substantial new questions of patentability with
respect to the Challenged Claims of the 040 Patent. Treuhaft is similar to the system claimed in
the 040 Patent, in part, because it uses a DNS name server 120 in a role similar to the DPI device
in the ’040 Patent. Like the DPI device in the 040 Patent, Treuhaft’s DNS name server 120

receives a request (a modified DNS query) from a host device seeking to access a destination

36 of 161

server. The modified DNS query, like the service request in the 040 Patent, contains two pieces
of information: (1) control information identifying the host device; and (2) a domain name of the
destination server the host device seeks to access. Both Treuhaft’s DNS name server and the DPI
device resolve the domain name of the destination server into its corresponding IP address. And,
similar to the DPI device, Treuhaft’s DNS name server evaluates the DNS query and denies it if

the request is not appropriate.

83. Infact, in my opinion, the manner in which Treuhaft’s DNS name server evaluates
the DNS query goes directly to the purported point of novelty of the 040 Patent and the reason
the examiner allowed the 040 Patent claims. Like the DPI devices applies the “preset list” in
the *040 Patent, the DNS name server of Treuhaft applies subscriber information 280 to determine
whether to allow or deny the requested connection. And Treuhaft discloses or suggests that the
subscriber information 280, like the “preset list” of the ’040 Patent, identifies corresponding server
IP addresses under the access authority of each user or subscriber in Treuhaft. Accordingly, in my
opinion, Treuhaft alone presents a substantial new question of patentability with respect to the 040

Patent.

84. In my opinion, Sorenson and Bellinson further address the purported point of
novelty of the 040 Patent and raise substantial new questions of patentability in combination with
Treuhaft. For example, Sorenson’s blacklist of IP addresses and Bellinson’s allow-block list of
addresses each correspond to the claimed preset list. It is noted that element [1.4] recites that the
preset list contains addresses “under an access authority of the terminal device. Though Sorenson’s
IP address blacklist identifies corresponding addresses not under the access authority of the device
seeking the connection, as evidenced by Bellinson (and Subramanian), whitelists and blacklists
were well-known and used interchangeably long before the claimed priority date of the 040 Patent.
Accordingly, instead of a blacklist, a POSA would have found it obvious to use a whitelist of IP
addresses under the access authority of the host device in the Treuhaft combinations. As explained
above and in more detail below in the Detailed Application section for the specific claim elements
pertinent to the combination, a POSA would have had been motivated to combine Treuhaft with
Sorenson and/or combine Treuhaft/Sorenson with Bellinson, and had a reasonable expectation in

doing so.

37 of 161

85. Accordingly, as described above and below in the Detailed Discussion section, it is
my opinion that the proposed combinations of Treuhaft, Treuhaft and Sorenson, and
Treuhaft/Sorenson in view of Bellinson teach, or at least render obvious, “discarding the service
request packet if the resolved service server IP address does not belong to a preset service server
IP address corresponding to the received terminal domain name in a preset list, wherein in the
preset list the terminal domain name of each terminal device is correspondingly provided with a
plurality of accessible service server IP addresses under an access authority of the terminal device,”
as recited by independent claims 1, 6, and 11. Thus, in my opinion, the proposed combinations of
Treuhaft, Treuhaft and Sorenson, and Treuhaft/Sorenson in view of Bellinson present a substantial
new question of patentability with respect to the Challenged Claims.

X. DETAILED APPLICATION OF THE PRIOR ART TO EVERY CLAIM
FOR WHICH REEXAMINATION IS REQUESTED

86. I explain below in detail how, in my opinion, the prior art references listed above

establish the unpatentability of the Challenged Claims as anticipated and obvious.

A. Ground 1: RFC 1928 in view of Koblas and RFC 3089 (“SOCKS”) Render
Obvious Claims 1, 4-6, and 9-11 of the’ 040 Patent
87. In my opinion RFC 1928 in view of Koblas and RFC 3089 (“SOCKS”) render
obvious claims 1, 4-6, and 9-11 of the 040 Patent.

1. Independent Claim 1
a. [l.pre] “A packet receiving method, comprising:”

88. To the extent the preamble is limiting, RFC 1928 describes SOCKS Protocol
Version 5, which is a packet receiving method. The SOCKS Protocol is an Internet protocol that
exchanges (i.e., sends and receives) network packets over TCP/IP between a client and server
through a proxy server that acts as a firewall, called a SOCKS proxy server. SOCKS Version 5
provides authentication so only authorized users may access a server. According to RFC 1928,
SOCKS Version 5 is a “protocol ... designed to provide a framework for client-server applications
in both the TCP and UDP domains to conveniently and securely use the services of a network

firewall.” Ex. 1005, 2.

89. Accordingly, in my opinion, RFC 1928 discloses “a packet receiving method,” as

claimed.

38 of 161

b. [1.1] “receiving a service request packet sent by a terminal device,
wherein the service request packet carries a terminal domain

name indicating the terminal device and a server domain name
indicating a service server required by the service request packet
sent by the terminal device;”

90. In my opinion, RFC 1928 and Koblas renders obvious this element. As laid out
below, RFC 1928 discloses that a SOCKS proxy server receives a SOCKS connection request
(claimed service request packet) sent by a SOCKS client (claimed terminal device). The SOCKS
request carries a fully qualified domain name (claimed server domain name) indicating a server
behind the SOCKS proxy server to which the SOCKS client desires a connection (claimed service
server required by the service request packet). The SOCKS connection request also contains a
source IP address of the SOCKS client (claimed terminal device)--rather than a terminal domain
name. But, in my opinion, it would have been obvious to include a domain name in the SOCKS

connection request based on the disclosure of Koblas, as I discuss below.

91. Specifically, RFC 1928 discloses that a SOCKS proxy server receives a SOCKS
connection request (claimed service request packet) from a TCP-based SOCKS client (claimed
terminal device):

When a TCP-based client wishes to establish a connection to an object that is
reachable only via a firewall (such determination is left up to the implementation),
it must open a TCP connection to the appropriate SOCKS port on the SOCKS
server system. The SOCKS service is conventionally located on TCP port 1080. If
the connection request succeeds, the client enters a negotiation for the
authentication method to be used, authenticates with the chosen method, then
sends a relay request. The SOCKS server evaluates the request, and either
establishes the appropriate connection or denies it.

Ex. 1005, 2-3; see also id., 4 (“Once the method-dependent subnegotiation has completed, the

client sends the request details.”).

92. RFC 1928 shows the form of the SOCKS connection request:

39 of 161

BRI

4]

53

3

Id., 4* As highlighted above, the SOCKS connection request is a “packet” because it is a unit of
information transmitted as a whole. Ex. 1012, 5 (definition of “packet”). Specifically, the SOCKS
connection request is a TCP/IP packet sent over the Internet containing the VER, CMD, RSV,
ATYP, DST.ADDR, and DST PORT fields in a single message, as shown in the Figure above. Ex.
1005, 4; see also id., 3. The SOCKS client is a TCP/IP client and thus communicates using TCP/IP
packets. Accordingly, in my opinion, the SOCKS proxy server’s receiving a SOCKS connection

request from a SOCKS client discloses “receiving a service request packet,” as claimed.

93. The SOCKS connection request “carries ... a server domain name indicating a
service server required by the service request packet sent by the terminal device,” as claimed.
Particularly, the SOCKS connection request carries a DST.ADDR (destination address) field
containing a fully qualified domain name (claimed server domain name) of a server, behind the

SOCKS proxy server, to which the SOCKS client desires to connect:

46 of 161

=1

£

ix3
P

0%
g
15721
e
vt O

Ex. 1005, 4.

94. As highlighted in the Figure above, the SOCKS request has a DST.ADDR field,
which contains the “desired destination address” sought by the SOCKS client. The preceding field
ATYP specifies the “address type of [the] following address” contained in the DST.ADDR field.
Id., 4. As shown, SOCKS supports a destination address in the form of “DOMAINNAME” using
protocol version “X’ 03°”. Id., 4. Following the description of the SOCKS connection request,

RFC 1928 explains that X* 03° means “the address field contains a fully-qualified domain name.”

Id., 5. Thus, in use, SOCKS clients send connection requests containing a fully qualified domain
name (e.g., www.website.com) in the DST.ADDR field. Because the SOCKS connection request
contains a fully qualified domain name of the destination server, it is my opinion that the SOCKS
connection request discloses a “service request packet ... carr[ying] ... a server domain name
indicating a service server required by the service request packet sent by the terminal device,” as

claimed.

41 of 161

95. The SOCKS connection request (claimed service request packet) carries a source
IP address indicating the SOCKS client (claimed terminal device). TCP/IP protocol requires all
TCP/IP packets to include a header containing a source IP address indicating the device that sent
the packet. And because the SOCKS connection request is a TCP/IP packet sent over the Internet,
it is required that the SOCKS connection request contains a header with the source IP address of
the SOCKS client, though not shown in the Figure above. /d., 1 (SOCKS is an Internet protocol),
2 (SOCKS is a framework for TCP-based client-server application), 7 (the connection established
using SOCKS is a TCP connection). Thus, in my opinion, RFC 1928 discloses, or at least suggests,
that the SOCKS connection request contains a source IP address indicating the SOCKS client
(claimed terminal device).
i. Koblas discloses or suggests “the service request packet

carries a terminal domain name indicating the terminal
device”

96. To the extent that RFC 1928 does not expressly disclose that the SOCKS
connection request carries a domain name indicating the SOCKS client (claimed terminal domain
name), in my opinion Koblas suggests this by disclosing that the SOCKS server uses a
Configuration File mapping SOCKS client domain names to corresponding permitted/denied

server IP addresses. See Ex. 1006, 7-9.

The contiguration file 15 located on the firewall host and 1s used by sockd
when determining whether to accept or deny requests. The file i1s parsed
from beginning to end, with the first fully matching line retuming the
accessibility. The syntax of the hnes n this file 15 as follows:

. . \ . . | N . - L e . 1.
tpermut | deny} <~W> <mask> [<<dest-host> <mask>

[<<operator> <port>]]

Lines begin with etther ‘permit” or ‘deny” following which are either 2, 4,
or 6 fields, contaimning host address and mask pawrs for sowrce and
destination. as well as a boolean operator and a service port.

Ex. 1006, 7*,

42 of 161

97. As highlighted above, in the SOCKS Configuration File, the <source-host> field
contains the host address of the SOCKS client source (claimed terminal device) and the
corresponding <dest-host> field in the entry contains the address of the corresponding destination
server. Id. Depending on which value the {permit | deny} field contains, the SOCKS server will
respectively permit or deny the SOCKS client source in the <source-host> field to connect to the
corresponding destination server address in the <dest-host> field. /d., 7. Moreover, “[h]ost

addresses and services may be specified either by name or number,” meaning SOCKS supports

listing either a domain name or an IP address in the <source-host> and <dest-host> fields. /d.,

98. Similarly, in the Sample Configuration file in Figure 5, Koblas shows the SOCKS
server permits a connection request from the source domain name lloyd.mips.com (claimed
terminal domain name) to connect to the corresponding preset destination address sgi.com.

FIGURE 5, A Sample Contiguration Fite

#
Deny all host te every host whols service
&

deny 0.5.0.0 255.255.255.255 0.0.0.0 255.2585.255.255 eg whols
s

Iat 1loyd.md
$ S8
permit iliowl mips.com:
deny lloyd.mips.com 2.
#

Allow all hosts on the 130,82 network access Lo the world
¥

permit 130.862.0.0 0.0.255.288

pa.com only use finger service to sgl.oom

SN
X

§.8.0.0 e finger
.0.0.¢0

Deny ail hosts which do net mateh anything in thisg file
{i.e. All hosts coming in from the Intsrnat)

e M A A

Id., 8*% In my opinion, because Koblas discloses that the SOCKS server screens connection
requests based on the domain name of the SOCKS client source sending the connection request,
Koblas at least suggests that the connection request may contain the domain name of the SOCKS
client source. Thus, in my opinion, Koblas at least suggests “the service request packet carries a

terminal domain name indicating the terminal device,” as claimed. /d.

1i. Rational to combine Koblas with RFC 1928/RFC 3038

43 of 161

99. In my opinion, it would have been obvious based on Koblas to modify the SOCKS
request to include the domain name of the client for several reasons. For example, Koblas provides
teaching, suggestion, and/or motivation for making this modification. Whereas RFC 1928
describes SOCKS generally to “provide a framework for client-server applications ... to
conveniently and securely use the services of a network firewall,” Ex. 1005, 2, Koblas drills down
with “several strategies which can be used to configure an Internet connection to prevent unwanted
intrusion” using the SOCKS protocol, Ex. 1006, 1. Thus, in my opinion, a POSA considering RFC
1928 and the general framework of the SOCKS protocol would have looked to Koblas for specific

examples of strategies to configure secure connections using SOCKS.

100. AsIexplain above, Koblas teaches that the SOCKS protocol applies access controls
to SOCKS connection requests using information contained in a “Configuration File.” Id., 7-9.

The Configuration File maps terminal domain names to corresponding allowed or denied server

addresses. See Id., 8 (for example, permitting the terminal domain name “lloyd.mips.com” to
access the service server domain name “sgi.com”). A POSA would have understood this means
that, in at least some scenarios, the SOCKS server needs the domain name—not the IP address—
of the SOCKS client to determine whether to permit or deny the connection request. There are two

ways the SOCKS server can determine the domain name of the SOCKS client:

101. The first, and most logical, way is that the SOCKS client simply provides its
domain name to the SOCKS server in the connection request. The SOCKS server needs the
SOCKS client’s domain name to apply the Configuration File rules for that SOCKS client to its
connection request, and a POSA would have recognized having the SOCKS client simply include
its domain name in a connection request as the simplest and most apparent way for the SOCKS
server to learn domain name of the SOCKS client. For this reason, it is my opinion that a POSA
would have found it obvious modify SOCKS as described in RFC 19298 to include the domain

name of the SOCKS client in the connection request.

102. The second way, the SOCKS server resolves the domain name of the SOCKS client
from its source IP address (e.g., contained in the connection request packet). And, after resolving
the domain name of the SOCKS client, the SOCKS server may then identify and apply that client’s
rules in the Configuration File. But this way is less efficient than the first way, requiring the extra

step of resolving the SOCKS client domain name. Accordingly, Koblas suggests that, in at least

44 of 161

some implementations, the SOCKS proxy server would need to convert the source IP address of
the SOCKS client, contained in the SOCKS connection request, to its corresponding domain name

before applying the access controls specified in the Configuration File.

103. To eliminate this extra step of converting the IP address of the SOCKS client to a
domain name before applying the Configuration File, in my opinion, it would have been obvious
to simply have the SOCKS client include its domain name in the SOCKS connection request
(rather than just its IP address). This would allow the SOCKS proxy server to immediately apply
the access controls in the Configuration File upon receiving a connection request, speeding up and
simplifying the process of establishing the connection. It would also eliminate the need for the
SOCKS proxy server to maintain and update information mapping SOCKS client IP addresses to
domain names, request services from other devices to convert client IP addresses to domain names,
and/or perform other DNS-like functions to convert the source IP address into a domain name so
the Configuration File can be applied. Thus, the combination would allow simplifying the
configuration of the DNS proxy server itself could and streamlining the process for establishing a
secure connection. Accordingly, in my opinion, a POSA would have been motivated to modify the
SOCKS protocol as described in RFC 1928 to include the domain name of the SOCKS client in a

connection request.

104. In my opinion, a POSA would have made this modification with mere routine skill
in the art and a reasonable expectation of success. Indeed, a fully qualified domain name is
essentially equivalent to its corresponding IP address because both represent the same address of
the same device on a network. Ex. 1012 (defining “domain name” as “[a]n address of a network
connection that identifies the owner of that address in a hierarchical format™). They differ mainly
in their form: a domain name is easily read and memorized by a person whereas a machine-
readable IP address is not. The 040 Patent itself recognizes this essential equivalence between a
domain name and its IP address, explaining that “mutual conversion [can be achieved] between a
domain name which is readily memorized by a user and a machine recognizable IP address.” Ex.

1001, 8:30-33.

105. Accordingly, in my opinion, a POSA would have viewed modifying the SOCKS
connection request to include the client’s domain name---when the connection request already

contains that same address in its other form as an IP address—as a simple, unintrusive change. For

45 of 161

example, a POSA would have expanded the structure of the SOCKS connection request, discussed
above, to include an additional client domain name field containing the domain name of the
SOCKS client. This minor change would not otherwise impact operation of SOCKS protocol and,
as discussed, advantageously simplifies the process of applying the access controls in the

Configuration File and related functionality.

106. Accordingly, in my opinion, RFC 1928 and Koblas render obvious “receiving a
service request packet sent by a terminal device, wherein the service request packet carries ... a
server domain name indicating the service server requested by the service request packet sent by

the terminal device,” as claimed.

c. [1.2] “resolving the received server domain name to obtain a
service server Internet protocol (IP) address; and”

107. In my opinion, RFC 1928 and RFC 3089 teach or at least suggest this element.
Resolving the received fully qualified domain name of the server (claimed received server domain
name) to obtain an IP address of that server (claimed service server IP address) is a basic and
necessary function of SOCKS. Accordingly, although RFC 1928 does not explicitly detail this
process, it is my opinion that a POSA would understand it to be taught, or at least suggested, by
RFC 1928’s disclosure and teaching of the SOCKS protocol. See RFC 3089. RFC 1928 only lacks
a detailed description on this aspect because RFC 1928 focuses on the broader framework of the
SOCKS protocol and does not attempt to describe such well-known and basic aspects of the
protocol. See generally Ex. 1005. Nevertheless, RFC 3089 does explicitly teach resolving the IP
address of the server domain name as claimed in this limitation. Thus, in my opinion, it would
have been obvious to do so in view of the teachings of RFC 1928 and RFC 3089.

i RFC 3089 discloses element [1.2]

108. RFC 3089 describes a gateway mechanism for the SOCKS proxy server to handle
both IPv6 and IPv4. See Ex. 1007, 1 (“The SOCKS-based IPv6/IPv4 gateway mechanism is based
on a mechanism that relays two ‘terminated’ IPv4 and IPv6 connections at the ‘application layer’

(the SOCKS server)”). RFC 3098 explains that the “characteristics [of the SOCKS server] are

inherited from those of the connection relay mechanism at the application layer and those of the

native SOCKS mechanism.” /d. 1. Thus, a POSA would have understood that the SOCKS server

discussed in RFC 3089 inherits, and thus includes, the functionality of the SOCKS server described

46 of 161

in the earlier RFC 1928. That is, when RFC 3089 refers to the SOCKS server, it is the same SOCKS

server referenced in RFC 1928.

109. RFC 3089 describes in detail the process by which the SOCKS server resolves the
fully qualified domain name (FQDN) of the destination node (Destination D)—the claimed service
server—to obtain its “real IP address”—the claimed service server IP address:

The detailed internal procedure of the "DNS name resolving delegation" and

address mapping management related issues are described as follows.

1. An application on the source node (Client C) tries to get the IP address information of
the destination node (Destination D) by calling the DNS name resolving function
(e.g., gethostbyname()). At this time, the logical host name ("FQDN") information of
the Destination D is passed to the application's *Socks Lib* as an argument of called
APIs.

2. Since the *Socks Lib* has replaced such DNS name resolving APIs, the real DNS
name resolving APIs is not called here. The argued "FQDN" information is merely
registered into a mapping table in *Socks Lib*, and a "fake IP" address is selected as
information that is replied to the application from a reserved special IP address space
that is never used in real communications (e.g., 0.0.0.x). The address family type of
the "fake IP" address must be suitable for requests called by the applications. Namely,
it must belong to the same address family of the Client C, even if the address family
of the Destination D is different from it. After the selected "fake IP" address is
registered into the mapping table as a pair with the "FQDN", it is replied to the
application.

3. The application receives the "fake IP" address, and prepares a "socket". The "fake IP"
address information is used as an element of the "socket". The application calls socket
APIs (e.g., connect()) to start a communication. The "socket" is used as an argument
of the APIs.

4. Since the *Socks Lib* has replaced such socket APIs, the real socket function is not
called. The IP address information of the argued socket is checked. If the address
belongs to the special address space for the fake address, the matched registered
"FQDN" information of the "fake IP" address is obtained from the mapping table.

5. The "FQDN" information is transferred to the *Gateway* on the relay server
(Gateway Q) by using the SOCKS command that is matched to the called socket
APIs. (e.g., for connect(), the CONNECT command is used.)

6. Finally, the real DNS name resolving API (e.g., getaddrinfo()) is called at the
*Gateway ™. At this time, the received "FQDN" information via the SOCKS protocol
is used as an argument of the called APIs.

7. The *Gateway™ obtains the "real IP" address from a DNS server, and creates a
"socket". The "real IP" address information is used as an element of the "socket".

8. The *Gateway* calls socket APIs (e.g., connect()) to communicate with the
Destination D. The "socket" is used as an argument of the APIs.

Ex. 1007, 5-6. Accordingly, in my opinion, RFC 3089 discloses “resolving the received server

domain name to obtain a service server Internet protocol (IP) address,” as claimed.

47 of 161

ii. Rationale to Combine RFC 3089 with RFC 1928

110. Inmy opinion, a POSA would have found it obvious to modify RFC 1928 to resolve
the received fully qualified domain name of the server (claimed received server domain name) to
obtain an IP address of that server (claimed service server IP address), as disclosed by RFC 1928.
First, the references provide teaching, suggestion, and/or motivation for making this modification.
Both RFC 1928 and RFC 3089 relate to the same SOCKS protocol, so a POSA considering the
general framework of SOCKS in RFC 1928 would have looked to other SOCKS references like

RFC 3089 for additional implementation details about various aspects of the system.

111. Moreover, at the outset of describing SOCKS’ domain name resolution process,

RFC 3089 explains that, “[i]n all communication applications, it is [] necessary to obtain

destination IP address information to start a communication.” Ex. 1007, 4. As explained above,

RFC 1928 teaches that SOCKS supports receiving the destination address as a fully qualified
domain name in the connection request. Ex. 1005, 4-5. Thus, according to RFC 1928, it is
absolutely necessary in this scenario to resolve the fully qualified domain name into a
corresponding IP address—or else the SOCKS server cannot start the connection. Ex. 1007, 4.
Accordingly, in my opinion, to implement a working SOCKS system, a POSA would have found
it obvious (and necessary) to modify SOCKS as described in RFC 1928 to resolve the fully
qualified domain name of the destination server (claimed received server domain name) to obtain

an IP address of the destination server (claimed service server IP address), as claimed.

112. Moreover, the combination merely involves the use of known technique (RFC
3089’s resolving a fully qualified domain name) to improve the same system (SOCKS
communication system according to RFC 1928) in the same way, or applying a known technique
(RFC 3089’s resolving a fully qualified domain name) to a known system (SOCKS communication
system according to RFC 1928) ready for improvement to yield predictable results. For example,
since the SOCKS protocol as described in RFC 1928 would be unable to establish a connection
without first resolving the fully qualified domain name of the destination as described in RFC
3089, adding this functionality would improve SOCKS as described in RFC 1928 in the same way
it operates in RFC 3089. Additionally, because the combination simply adds necessary SOCKS
functionality to the general SOCKS system described in RFC 1928 to make it operational, the

combination would yield predictable results.

48 of 161

113. Accordingly, in my opinion, RFC 1928 and RFC 3089 render obvious “resolving
the received server domain name to obtain a service server Internet protocol (IP) address,” as

claimed.

d. [1.3] “discarding the service request packet if the resolved service
server IP address does not belong to a preset service server IP

address corresponding to the received terminal domain name in a
preset list,”

114. In my opinion, the combination of RFC 1928, Koblas, and RFC 3089 renders
obvious this element. Koblas discloses or suggests discarding the SOCKS connection request
(service request packet) if the resolved address of the destination server (resolved service server
IP address) is not listed as an allowed address (does not belong to a preset service server IP address)
corresponding to the domain name of the SOCKS client (received terminal domain name) in a
Configuration File (preset list). Moreover, in my opinion, it would have been obvious to modify
the RFC 1928/RFC 3089 combination discussed above to include this element.

i Koblas discloses element [1.3]

115. RFC 1928 discloses that the SOCKS server discards the SOCKS connection request
(claimed service request packet) if the requested connection is not “appropriate”: [tlhe SOCKS
server evaluates the request, and either establishes the appropriate connection or denies it.” Ex.
1005, 3. As explained above, the broadest reasonable interpretation of “discarding the service
request packet” includes preventing unauthorized access to the resolved service server IP address.
Supra Section VLA In my opinion, denying the connection request, as disclosed by RFC 1928,

constitutes preventing unauthorized access to the resolved service server IP address.

116. RFC 1928, however, does not expressly disclose the mechanism the SOCKS server
uses to determine whether the requested connection is “appropriate.” Thus, RFC 1928 does not
expressly disclose discarding the SOCKS connection request “if the resolved service server IP
address does not belong to a preset service server IP address corresponding to the received terminal

domain name in a preset list,” as claimed.

117. Koblas, however, teaches that the SOCKS server uses a “Configuration File”
(claimed preset list) to evaluate and allow or deny the connection request. The Configuration File

contains an entry for each SOCKS client source (claimed terminal device) identifying

49 of 161

corresponding “permit” or “deny” destination addresses (claimed service server IP address) to
which the SOCKS server will respectively permit or deny connections requested by the SOCKS

client source:

The configuration file 1s located on the firewall host and 15 used by sockd when
determining whether to accept or deny reguests. The file is parsed from beginning
to end, with the first fully matching line returning the accessibility. The syntax of
the hnes in ths file 15 as follows:

%
%

{fpermit | denv} - W‘? <mask> {< 'idr:%t hOst‘ <mask> [<operator>

e “pOTEH] &

&
§

“preset st

-
%
z
y/////j’///////?

: val Qomain wawme” Trsereanondin =5
Lmes hegin with etther ‘permut’ or Ltfllf,f follow mg w hlch are either 2. 4, or 6
fields, containing host address and mask pairs for source and destination, as well as

a hoolean operator and a service port.

Ex. 1006, 7*,

118. As highlighted above, in the SOCKS Configuration File, the <source-host> field
contains the host address of the SOCKS client source (claimed terminal device) and the
corresponding <dest-host> field in the entry contains the address of the corresponding destination
server (claimed corresponding preset service server IP address). /d. Depending on which value the
{permit | deny} field contains, the SOCKS server will respectively permit or deny the SOCKS
client source in the <source-host> field to connect to the corresponding destination server address
in the <dest-host> field. /d., 7. Additionally, Koblas explains that “[h]ost addresses and services

may be specified either by name or number,” meaning SOCKS supports listing either a domain

name or an IP address in the <source-host> and <dest-host> fields. /d., 8. Accordingly, in my
opinion, the Configuration File of Koblas discloses the claimed preset list containing a preset
service server IP address <dest-host> corresponding to the received terminal domain name

<source-host>.

119. Koblas further teaches that the SOCKS server discards the SOCKS connection
request if the Configuration File (claimed preset list) does not list the <dest-host> address (claimed
resolved service server IP address) as a permitted connection for the <source-host> domain name
(claimed does not belong to a preset service server IP address corresponding to the received

terminal domain name). This is because “[a]ccess is denied to all addresses which do not match

56 of 161

anything in the configuration file.” /d., 8. Thus, if the SOCKS server does not find a particular
resolved <dest-host> address listed in the Configuration File as permitted connection for the
<source-host> domain name, it will deny the SOCKS connection request even though the

Configuration File does not list the <dest-host> address as a denied connection. /d., 8.

120. In Figure 5, Koblas “shows an example of how the lines in a configuration file

might appear”:
“preset Hst”
#
§# Deny all host to every host whois service
M

deny ©0.0.0.0 255.255.285.255 (.¢.0.0 2585.255.255.2558 ey whols
¥
¥ Let Iloyd. ""\lpﬁ com om.y use Einger .\xér?lﬁﬁ o sgi. com

\\\\\\\\ ¢" WY \\\ ¥
ferminal domain ua

&
e

0.0.0.0 &g fr’sgex

Id., 8. In this Sample Configuration file, the SOCKS server permits a request from the source
domain name lloyd.mips.com (claimed terminal domain name) to connect to the corresponding
preset destination address sgi.com, and denies requested connections “which do not match
anything in this file.” /d. Although shown as a domain name in this example, the server
destination address sgi.com “may be specified either by name or number,” so the IP address of

sgi.com could be used instead. /d., 8;

121. As explained above, “discarding” the service request includes preventing
unauthorized access to the resolved service server IP address. Supra Section VI.A. In my opinion,
by allowing a connection if the Configuration File lists the resolved server IP address as an allowed

connection for the source domain name and denying all connections that do not match anything in

51 of 161

the Configuration File, application of the Configuration File prevents unauthorized access to the

resolved server IP address.

122, Accordingly, for at least the reasons above, it is my opinion that Koblas discloses
“discarding the service request packet if the resolved service server IP address does not belong to
a preset service server IP address corresponding to the received terminal domain name in a preset
list,” as claimed.

1i. Rationale to combine Koblas with RFC 1928 and RFC
3089

123. In my opinion, a POSA would have found it obvious to modify SOCKS as
described in RFC 1928 and/or RFC 3089 to use a Configuration File as described in Koblas to
discard a SOCKS connection request if the Configuration File does not list the resolved destination
address as an allowed connection for the SOCKS client. The references provide teaching,
suggestion, and/or motivation for making this modification. RFC 1928, RFC 3089, and Koblas all
relate to the same SOCKS protocol, so a POSA implementing a SOCKS system as described in
RFC 1928/RFC 3089 would have looked to other SOCKS references like Koblas for additional

implementation details about various aspects of the system.

124. Although RFC 1928 explains “[t]he SOCKS server evaluates the request, and either
establishes the appropriate connection or denies it,” RFC 1928 does not discuss a specific
mechanism within SOCKS to do so because this falls outside its general scope of “provid[ing] a
framework for client-server applications ... to conveniently and securely use the services of a
network firewall.” Ex. 1005, 2. Thus, in my opinion, a POSA would have looked to other SOCKS
references for specific mechanisms to evaluate the appropriateness of SOCKS connection requests,

and Koblas’s Configuration File provides one such mechanism.

125. Koblas addresses “[o]ne of the more important [security] issues” to consider when
connecting to a network over the Internet: “intruders attempting to gain access to local hosts” using
the SOCKS protocol. Ex. 1006, 3. In my opinion, a POSA would have found this solution pertinent
to RFC 1928 because, in applying the Configuration File as taught by Koblas, the SOCKS server
performs the function mentioned in RFC 1928: “[t]he SOCKS server evaluates the request, and
either establishes the appropriate connection or denies it.” Ex. 1005, 3. Thus, a POSA would have

found it obvious and been motivated to add the SOCKS Configuration File functionality described

52 of 161

in Koblas to the SOCKS system as described in RFC 1928 to make SOCKS work as RFC 1928

intends.

126. Moreover, the combination merely involves the use of a known technique (Koblas’s
Configuration File) to improve the same system (SOCKS system according to RFC 1928) in the
same way, or applying a known technique (Koblas’s Configuration File) to a known system
(SOCKS system according to RFC 1928) ready for improvement to yield predictable results. The
combination would improve SOCKS as described in RFC 1928 because, as discussed, RFC 1928
teaches that the SOCKS server evaluates a connection request to confirm its appropriateness before
establishing the connection, but does not expressly describe a mechanism for doing so. Ex. 1005,
2. Koblas fills this gap with its Configuration-File solution for evaluating SOCKS connection
requests. Thus, combining Koblas’s Configuration File technique with RFC 1928 would improve
the SOCKS system as described in RFC 1928 in the same way it works in Koblas—preventing
intruders from gaining access to local hosts by only allowing connections from certain sources to

certain destinations.

127. Additionally, in my opinion, the combination would yield predictable results and
would be made through only routine skill in the art. Indeed, the combination simply adds a SOCKS
security solution from Koblas to the general SOCKS system described in RFC 1928. With the
Configuration File functionality added to RFC 1928, the combined SOCKS system would operate
in the way RFC 1928 describes: the SOCKS server would evaluate a connection request and
establish the connection if appropriate or deny it otherwise. Ex. 1005, 3. Moreover, Koblas
explains, “[t]he configuration file is located on the firewall host and is used by sockd when
determining whether to accept or deny requests.” Ex. 1006, 7. By firewall, Koblas is referring to
the SOCKS server. Thus, a POSA would have recognized that, in combining Koblas with RFC
1928, the Configuration File of Koblas would be stored on the SOCKS server in RFC 1928 and
applied when a connection request is received. Because Koblas and RFC 1928 both describe the
same SOCKS protocol, in my opinion, a POSA would have modified the SOCKS server in RFC
1928 to include the Configuration-File functionality of Koblas through routine skill had and a
reasonable expectation of success in doing so. In fact, in my experience, most, if not all, SOCKS
implementations available at the time and to this date use a configuration file that provides similar

if not identical features as disclosed by Koblas.

53 of 161

128. Accordingly, for at least the reasons above, it is my opinion that RFC 1928, Koblas,

and RFC 3089 render obvious “discarding the service request packet if the resolved service server

IP address does not belong to a preset service server IP address corresponding to the received

terminal domain name in a preset list,” as claimed.

e. [1.4] “wherein in the preset list the terminal domain name of

each terminal device is correspondingly provided with a plurality
of accessible service server IP addresses under an access authority

of the terminal device.”

129. In my opinion, the combination of RFC 1928, Koblas, and RFC 3089 renders

obvious this element. As highlighted below, in Koblas’s Configuration File (preset list), the

domain name of each SOCKS client address (terminal domain name) is provided with an

accessible destination server address (accessible service server IP address) under an access

authority of the SOCKS client source (terminal device):

¥

Ex. 1006, 7.
Soreset Het™
JIGURE §. A Sample Configuration File &\@
#
Deny all host to every host whols servige
¥

deny 0.0.0.0 255.255.255.255 0.0.0.0 253.255.255.255 eq vwhols
#

¢
.) ' N
Let lloyd.mips.com only
SRS orevenyd ouee Y oNon eusy dat ey vy
IUVITHEEY U pamy

parmit illovd mips.comil,
deny lloyd.mips.com 0.0,
#

Allow all hosts on the 130,82 network

?‘ P < 52 » Q * Q

Fororminal domain nawme

Deny all hosts which do not mateh anything in this file
(1.8, All hosts coming in from the Internet)

#

54 of 161

Ex. 1006, 8. As explained above, the Configuration File can specify source and destination
addresses “either by name or number.” /d., 6. Thus, although the Sample Configuration File above
shows an IP address (e.g., 130.62.0.0) for some of the SOCKS client sources (claimed terminal
device), Koblas teaches that a domain name could be used instead. Thus, in my opinion, the
combination renders obvious “the terminal domain name of each terminal device” is provided with

a corresponding accessible service server IP address, as claimed.

130. Moreover, though Koblas only shows one accessible (i.e., permitted) destination
address for each SOCKS client, it would have been obvious to include additional “permit” entries
listing additional accessible IP addresses for each SOCKS client. For example, the Sample
Configuration File only permits the SOCKS client lloyd.mips.com to access a single server
address—sgi.com. Of course, in practice, this SOCKS client and/or its user may need to access
more than just one site on the network. In this case, it would have been obvious for the
administrator to add more “permit” entries to the Configuration file listing more accessible server

addresses for the SOCKS client lloyd.mips.com.

131. Accordingly, for at least the reasons above, it is my opinion that RFC 1928, Koblas,
and RFC 3089 render obvious “wherein in the preset list the terminal domain name of each
terminal device is correspondingly provided with a plurality of accessible service server IP

addresses under an access authority of the terminal device,” as claimed.
2. Dependent Claim 4

a. [4.1] “The method according to claim 1, wherein, after the
resolving the received server domain name to obtain the service
server Internet protocol (IP) address, the method further
comprises:

if the resolved service server IP address belongs to the preset
service server IP address corresponding to the received terminal
domain name in the preset list, establishing a connection between
the terminal device and the service server corresponding to the
service server IP address, to enable the service server to provide a
service corresponding to the service request of the terminal device
to the terminal device.”

132, Tunderstand that claim 4 depends on independent claim 1 and recites the additional
elements quoted above. In my opinion, the combination of RFC 1928, Koblas, and RFC 3089

renders obvious independent claim 1 for the reasons discussed above. Supra Section X.A.1.

58 of 161

Moreover, it is my opinion that the combination renders obvious the additional elements of claim

4.

133. For example, RFC 3038 discloses “[t]he SOCKS server evaluates the request, and
either establishes the appropriate connection or denies it.” Ex. 1005, 3. Additionally, as discussed,
in the combined SOCKS system, the SOCKS server establishes a connection request if the
Configuration File lists the resolved IP address of the destination server as a “permitted”
connection for the domain name of the particular SOCKS client making the connection request.
See, e.g., Ex. 1006, 7-8. Accordingly, the combination of RFC 1928, Koblas, and RFC 3089
renders obvious “wherein, after the resolving the received server domain name to obtain the
service server Internet protocol (IP) address, the method further comprises: if the resolved service
server IP address belongs to the preset service server IP address corresponding to the received
terminal domain name in the preset list, establishing a connection between the terminal device
and the service server corresponding to the service server IP address, to enable the service server
to provide a service corresponding to the service request of the terminal device to the terminal

device,” as recited in claim 4.
3. Dependent Claim 5

a. [5.11 “The method according to claim 1, wherein, after the

resolving the received server domain name to obtain the service
server Internet protocol (IP) address, the method further
comprises:

if the resolved service server IP address belongs to the preset
service server IP address corresponding to the received terminal
domain name in the preset list, determining a service type of the
service request according to the terminal domain name of the
terminal device.”

134. Claim 5 depends on independent claim 1 and recites the additional elements quoted
above. The combination of RFC 1928, Koblas, and RFC 3089 renders obvious independent claim
1 for the reasons discussed above. Supra Section X.A.1. Moreover, in my opinion, the combination

of RFC 1928, Koblas, and RFC 3089 renders obvious additional elements of claim 5.

135. For example, in Koblas, the Configuration File specifies that the SOCKS client
domain name lloyd.mips.com may access the server sgi.com, but only for purposes of using the

“finger service” provided by that server. Ex. 1006, 8. This is reflected in a comment in the

56 of 161

Configuration File above the permit and deny entries for lloyd.mips.com, stating “Let

lloyd.mips.com only use finger service to sgi.com.” /d. Accordingly, the “permit” entry for

lloyd.mips.com specifies that lloyd.mips.com can only use sgi.com’s service “eq finger”, and the
“deny” entry beneath it denies all other connections sought by lloyd.mips.com to the server

sgi.com. /d., 8.

136. Thus, in my opinion, when the SOCKS client lloyd. mips.com sends a connection
request for sgi.com, the SOCKS server applies the Configuration File to determine that sgi.com is
an accessible address for lloyd. mips.com. /d. In my opinion, this discloses determining “if the
resolved service server IP address belongs to the preset service server IP address corresponding to
the received terminal domain name in the preset list,” as claimed. If this is the case, the SOCKS
server then determines that the SOCKS client is seeking access only to the “finger service” of
sgi.com, and not to the server more broadly, before establishing the connection. /d. In my opinion,
this discloses “determining a service type of the service request according to the terminal domain

name of the terminal device,” as claimed.

137. Accordingly, in my opinion, the combination of RFC 1928, Koblas, and RFC 3089
renders obvious “wherein, after the resolving the received server domain name to obtain the service
server Internet protocol (IP) address, the method further comprises: if the resolved service server
IP address belongs to the preset service server IP address corresponding to the received terminal
domain name in the preset list, determining a service type of the service request according to the

terminal domain name of the terminal device,” as recited in claim 5.

4. Independent Claim 6
138. Independent claim 6 is an apparatus claim to a “deep packet inspection (DPI)
device” configured to perform a method including elements [6.pre] to [6.4], which are virtually
identical to respective elements [1.pre] to [1.4] of independent claim 1. Compare *040 Patent claim
1 with id., claim 6. As set forth below, in my opinion, the combination of RFC 1928, Koblas, and
RFC 3089 renders the elements of independent claim 6 for reason similar to those discussed above

for independent claim 1.

a. [6.pre] “A deep packet inspection (DPI) device comprising a
hardware processor and a non-transitory computer readable
storage medium including executable instructions that, when
executed by the processor perform a method comprising:”

57 of 161

139.

To the extent the preamble is limiting, the SOCKS server described in RFC 1928,

Koblas, and RFC 3089 discloses the claimed DPI device. Moreover, since a server is a computer,

it would be understood to have a non-transitory computer readable storage medium (e.g., memory),

instructions stored in memory for performing the functions attributed to the SOCKS server in the

references, and one or more processors that execute the instructions to perform those functions.

140.

Accordingly, in my opinion, the combination of RFC 1928, Koblas, and RFC 3089

renders obvious “[a] deep packet inspection (DPI) device comprising a hardware processor and a

non-transitory computer readable storage medium including executable instructions that, when

executed by the processor perform a method,” as claimed.

141.

142.

143.

144.

b. [6.1] “receiving a service request packet sent by a terminal device,

wherein the service request packet carries a terminal domain
name indicating the terminal device and a server domain name
indicating a service server required by the service request packet
sent by the terminal device;”

See the discussion above for element [1.1]. Supra Section X A.1.b.

c. [6.2] “resolving the server domain name to obtain a service server
Internet protocol (IP) address; and”

See the discussion above for element [1.2]. Supra Section X A.1.c.

d. [6.3] “discarding the packet if the service server IP address

resolved does not belong to a preset service server IP address
corresponding to the received terminal domain name in a preset
list,”

See the discussion above for element [1.3]. Supra Section X A.1.d.

e. [6.4] “wherein in the preset list the terminal domain name of

each terminal device is correspondingly provided with accessible
service server IP addresses under an access authority of the
terminal device.”

See the discussion above for element [1.4]. Supra Section X A.1.e.

S. Dependent Claim 9

a. [9.1]1 “The DPI device according to claim 6, wherein after the

58 of 161

resolving the received server domain name to obtain the service
server Internet protocol (IP) address, the method further
comprises:

if the service server IP address resolved belongs to the preset
service server IP address corresponding to the received terminal
domain name in the preset list, establishing a connection between
the terminal device and the service server corresponding to the
service server IP address, to enable the service server to provide a
service corresponding to the service request of the terminal device
to the terminal device.”

145. Claim 9 depends on independent claim 6 and recites the additional elements quoted
above. The combination of RFC 1928, Koblas, and RFC 3089 renders obvious independent claim
6 for the reasons discussed above. Supra Section X.A.4. Moreover, claim 9 recites subject matter
virtually identical to that discussed above for dependent claim 4. Accordingly, for the reasons
discussed above in connection with claim 4, it is my opinion that the combination of RFC 1928,

Koblas, and RFC 3089 renders obvious the subject matter of claim 9. Supra Section X.A.2
6. Dependent Claim 10

a. [10.1] “The DPI device according to claim 6, wherein after the

resolving the received server domain name to obtain the service
server Internet protocol (IP) address, the method further
comprises:

if the service server IP address resolved belongs to the preset
service server IP address corresponding to the received terminal
domain name in the preset list, determining a service type of the
service request according to the terminal domain name of the
terminal device.”

146. Claim 10 depends on independent claim 6 and recites the additional elements
quoted above. The combination of RFC 1928, Koblas, and RFC 3089 renders obvious independent
claim 6 for the reasons discussed above. Supra Section X A 4. Moreover, claim 10 recites subject
matter virtually identical to that discussed above for dependent claim 5. Accordingly, for the
reasons discussed above in connection with claim 5, it is my opinion that the combination of RFC

1928, Koblas, and RFC 3089 renders obvious the subject matter of claim 10. Supra Section X A 3.

7. Independent Claim 11
147. Independent claim 11 is a system claim to a “deep packet inspection (DPI) device”

and a “terminal device.” As explained above, the SOCKS server and SOCKS client in RFC 1928,

59 of 161

Koblas, and RFC 3089 respectively correspond to the claimed DPI device and terminal device.
Supra Section X.A.4. Substantively, claim 11 is virtually identical to independent claims 1 and 6
discussed above. Accordingly, as set forth below, it is my opinion that the combination of RFC
1928, Koblas, and RFC 3089 renders obvious the elements of independent claim 11 for reasons

similar to those discussed above for independent claims 1 and 11.

a. [11.pre] “A system, comprising: a deep packet inspection (DPI)
device; and a terminal device:”

148. To the extent the preamble is limiting, the combination of RFC 1928, Koblas, and
RFC 3089 renders obvious this element. Supra Sections X.A 4.a, 1.a.

b. [11.1] [a terminal device]l “configured to send a service request

packet to the DPI device, wherein the packet carries a terminal
domain name indicating the terminal device and a server domain
name indicating a service server required by the service request
sent by the terminal device;” and

“the DPI device having a hardware processor and a non-

transitory computer readable storage medium including
executable instructions that, when executed by the processor
perform a method comprising: receiving the service request packet
sent by the terminal device;”

149. See the discussion above for element [1.1]. Supra Section X A.1.b.

c. [11.2] “resolving the server domain name to obtain a service
server Internet protocol (IP) address; and”

150. See the discussion above for element [1.2]. Supra Section X A.1.c.

d. [11.3] “discarding the packet if the service server IP address

resolved does not belong to a preset service server IP address
corresponding to the received terminal domain name in a preset
list,”

151. See the discussion above for element [1.3]. Supra Section X A.1.d.

e. [11.4] “wherein in the preset list the terminal domain name of

each terminal device is correspondingly provided with accessible
service server IP addresses under an access authority of the
terminal device.”

60 of 161

152. See the discussion above for element [1.4]. Supra Section X A.1.e.

B. Grounds 2 and 3: Treuhaft Anticipates and/or Renders Obvious Claims 1, 4-
6, and 9-11 of the’ 040 Patent
153. In my opinion, Treuhaft anticipate and/or renders obvious claims 1, 4-6, and 9-11

of the 040 Patent.
1. Independent Claim 1
a. [l.pre] “A packet receiving method, comprising:”

154. To the extent the preamble is limiting, Treuhaft discloses a packet receiving
method. Generally, in Treuhaft, a host device 105 sends a DNS query 110 to a DNS name server
120. Ex. 1008, §9 [0025]-[0027], [0030]-[0032]. The DNS query 110 requests the DNS name
server 102 to resolve a domain name, contained in the DNS query, into a corresponding IP address
and return the resolved IP address to the host device 105. /d. In response to receiving the DNS
query 110, the DNS name server 102 performs the steps shown in FIGS. 5B and 5C to resolve the
domain name into a corresponding IP address and return the IP address to the host device 105 in a
DNS response 170. Id.,] [0027], [0032], [0064]-[0067]. The claimed terminal device, packet(s),
and packet receiving method are highlighted in Figures 1, 5B, and 5C of Treuhaft below:

61 of 161

V0, NIV VI

H

o

ROOT DNG NAMESERVERS

AUTHORTATVE
PNS
MAMESERVER

Py

R

RAGOT ONB

oa
bt

FIG. 1

o wes wk cns ars crs eea wes crs eesny

H

REGEIVE DNS QGLERY

!

PARSE DOMAIN HAME AND CONTROL
INFORMATION AT DRE NAMESERVER

" 535

i

DETERMINE 1P ADDRESS USING OPTIONS FOR
RESOLVING DNS QUERIES AND CONTROL
INFORMATICN

> 540

!

GENERATE DNS RESPONSE BASED ON

b 545

!

SEND DNS RESPONSE TO NETWORK DEVICE

b 550

FIG. 5B

RECEIVE DNS RESPOMSE

fowr BES

Y

BASED ON DNS RESPONSE

DETERMINE IP ADDRESS AT NETWORK DEVICE

hwr ™ 560

FORWARD IF ADDRESS TQ APPLICATION

(END

}/\ 570

FIG. 5C

Treuhaft, FIGS. 1, 5B, 5C*

62 of 161

155. Accordingly, in my opinion, Treuhaft discloses “a packet receiving method,” as

claimed.

b. [1.1] “receiving a service request packet sent by a terminal device,
wherein the service request packet carries a terminal domain

name indicating the terminal device and a server domain name
indicating a service server required by the service request packet
sent by the terminal device;”

156. In my opinion, Treuhaft discloses, or at least suggests, this element. Specifically,
as explained below, Treuhaft discloses receiving a service request packet (modified DNS query
110) sent by aterminal device (host device 105). Additionally, the service request packet (modified
DNS query 110) carries a terminal domain name (control information) indicating the terminal
device (host device 105) and a server domain name (domain name) indicating the service server

requested by the service request packet (modified DNS query 110) sent by the terminal device
(host device 105).

157. In step 525 of FIG. 5A, the host device 105 sends a modified DNS query to the
DNS name server 120, and the DNS name server 120 receives the modified DNS query in step
530 of FIG. 5B. Ex. 1008, § [0063] (“In step 525, the modified DNS query is sent to a DNS
nameserver. For example, the modified DNS query may be sent to DNS nameserver 120.”),
9 [0064] (“in step 530, the DNS query is received”). In my opinion, Treuhaft’s DNS name server
120 receiving the modified DNS query from the host device 105 corresponds to the claimed

receiving a service request packet sent by a terminal device:

63 of 161

~ 5

'/

(BEGN

'

RECEIVE REQUEST FOR IP ADDRESS OF 530
DOMAIN NAME
\
Q FARSE DOMAIN NAME AND CONTROL |~ 535
GENERATE DNS QUERY AT NETWORKDEVICE | & FNFORMATION AT DNS NAMESERVER
BASED ON REQUEST Jy
1 § DETERMINE IP ADDRESS USING OPTIONS FOR
4 \‘ RESOLVING DNS QUERIES AND CONTRGOL pe~ 540
MODIFY DNS QUERY WITH CONTROL AroRMATR
piss TR S ¥ TLAR D 3 »
FORMATION i B0 !
] GENERATE DNS RESPONSE BASED ON L~ 545

\\\ DETERMINED P ADDRESS
525 *

SEND DNS RESPONSE TO NETWORK DEVICE o 550

FIG. 5A FIG. 5B

\\\\\\\\\\\\\\\Q\\\

158. Treuhaft’s DNS modified DNS query discloses “a service request packet ...
carr[ying] ... a server domain name indicating a service server required by the service request
packet sent by the terminal device,” as claimed. Treuhaft explains that “host device 105 makes

DNS query 110, for example for the IP address of the domain name ‘www.cnet.com,’ to a set of

DNS nameservers 115.” Id., [0025]. That is, in this example, the DNS query contains the domain
name “www.cnet.com” of a server host device 105 seeks to access, and host device 105 needs the
server’s IP address from the DNS name server to do so. In Figure 2, Treuhaft shows an example

format of the DNS query 400:

64 of 161

Treuhaft, FIG. 4%
As highlighted in Figure 4 above, the DNS query 400 includes a NAME field containing the
domain name of the URL the host device 105 seeks to access. /d., 1Y [0054]. Thus, like the *040

Patent’s service request packet, the DNS query of Treuhaft “carries ... a server domain name
indicating a service server required by the service request.” Ex. 1001, 3: 27-31; see also id., FIG.

4 (illustrating the claimed service request packet as an HTTP request containing a domain name).

159. Under the broadest reasonable interpretation standard, the modified DNS query of
Treuhaft is a “packet” because is a unit of information transmitted as a whole: a DNS protocol
request message. See id., | [0041], [0043] (alternatively referring to the DNS query as a “DNS
message”); Ex. 1012, 5 (definition of “packet”). A DNS query is a self-contained unit of
information transmitted as a whole, in a format required by DNS protocol. Similarly, the *040

patent provides an example in which the service request packet is an HTTP GET message—a self-

65 of 161

contained unit of information transmitted as a whole according to HTTP. Ex. 1001, FIG. 2

(showing the format of the HTTP service request message).

160. Accordingly, in my opinion, Treuhaft discloses, or at least suggests, “receiving a
service request packet sent by a terminal device, wherein the service request packet carries ... a
server domain name indicating the service server requested by the service request packet sent by

the terminal device,” as claimed.

161. Inmy opinion, Treuhaft further discloses or renders obvious that the modified DNS
query (claimed service request packet) also carries a terminal domain name indicating the terminal
device (host device 105), as claimed. Specifically, before the host device 105 sends the DNS query
to name server 102, “[i]n step 520, the DNS query is modified with control information.” Ex. 1008,

9 [0058]; see also id., § [0067] (“control information may be encoded into an individual DNS
query that enables a DNS nameserver to identify DNS resolution options, filters, or features to
apply when resolving the individual DNS query”). In my opinion, this control information included

in the modified DNS query discloses, or at least suggests, the claimed terminal domain name.

162. Under the broadest reasonable interpretation, “terminal domain name indicating the
terminal device” includes an identifier associated with an owner of the terminal device. See Ex.
Ex. 1012, 4 (definition of “domain name”); Ex. 1001, 3: 32-51 (describing a terminal domain name
as a “unique identifier” of the terminal device). Treuhaft discloses several examples in which the

control information serves as an identifier associated with an owner of the terminal device: “[t]he

control information may specify ... a user or subscriber identifier, a device identifier, or the like.”
Ex. 1008, 4 [0036]. In my opinion, each of the user identifier, subscriber identifier, or device
identifier serves as an identifier of the owner of the terminal device—in Treuhaft’s case, host
device 105—and thus discloses or suggests the claimed terminal domain name. Indeed, a domain
name is “like” a user identifier, subscriber identifier, or device identifier in that it is a name or
label of the device with which it is associated and/or its owner. Thus, in my opinion, Treuhaft at

least contemplates a domain name in its description of the control information.

163. Treuhaft uses “user or subscriber” interchangeably to refer to “a user or subscriber
of the OpenDNS service [who] set[s] one or more preferences or selections for how the options
are to be enabled or otherwise applied when DNS nameserver 120 resolves DNS queries associated

with the user,” Id., § [0028]; see also id., I [0008], [0024], [0027], [0029], [0036], [0060]. And

66 of 161

when the host device 105 attempts to access a server at a certain domain name, the DNS name
server 120 applies the corresponding user’s preferences or selections when resolving the DNS
query for the address of that domain name in step 540 of Figure 5B. See id., | [0065]; see also
id., 9 [0028], [0035], [0039]. Thus, in my opinion, Treuhaft’s user or subscriber information,
included in the modified DNS query as control information, discloses the claimed terminal domain
name because it identifies an owner associated with the host device 105 who is controlling the host

device 105’s access to the Internet.

164. Similarly, in my opinion, the device identifier of Treuhaft alternatively or
additionally discloses or suggests the claimed terminal domain name. As highlighted in Figure 4
below, Treuhaft discloses the modified DNS query 400 may contain a device ID 480 “provided in
the additional section of [the modified] DNS query.” Id., 9 [0053].

67 of 161

480

NN\

G 9555 5

A

.'\'Q-).\\\\\\b-’,\\\\"\\)\\\\\'&

- N
R NN RN R RN R AR . A AN ‘\\\\\\\

Treuhaft, FIG. 4%
In my opinion, the device ID 480 likewise corresponds to an owner associated with the host device
105 because “host device 105 can supply a device ID to DNS nameserver 120 by including
DEVICE ID 480.” Id. That is, the host device supplies its own device ID 480 when forming the
modified DNS query 400. And, as explained above, the host device 105 seeking access to a certain
domain name has an associated owner or subscriber to the DNS service who has supplied “one or
more preferences or selections for how the options are to be enabled or otherwise applied when
DNS nameserver 120 resolves DNS queries associated with the user.” Id., § [0028]; see also id.,
99 [0008], [0024], [0027], [0029], [0036], [0060]. Accordingly, Treuhaft’s device ID 480, included

in the modified DNS query as control information, also discloses or suggests the claimed terminal

68 of 161

domain name because it identifies an owner associated with the host device 105 who is controlling

the host device 105°s access to the Internet.

165. In another example disclosing or suggesting claimed terminal domain name,
highlighted in Figure 4 below, Treuhaft teaches that the modified DNS query may contain a
“CLIENTID for control of user, device, or vendor-specific DNS server behavior” within “the
additional data section of a request.” Id., | [0042]; see also id.,] [0043]-[0045].

~400

- N N R Y R R R e N ey
¥
N

3\\\\“&.\\\@3\\\\&“\

e

%, 9555

s

Ut 5400014 900 S Y S0 S T 0 S

&

i SL, T e, S0 S A T, S A, S S A S A 4 Y

b
-
=

,:)j
-y
=1
[=3

A

G 204 29

SN

SN RN

Treuhaft, FIG. 4%
Similar to the other control information discussed above, Treuhaft also uses the CLIENTID to
identify the user or subscriber associated with the host device 105 and control the host device’s

access to the Internet accordingly. See Ex. 1008, 99 [0042]-[0045].

69 of 161

166. Accordingly, as outlined above, the modified DNS query of Treuhaft discloses the

claimed service request packet as follows:

ey RN RRRRTRATR R TR R Rt

h
-}
o

y/j:
£
<3
[~

%

Treuhaft, FIG. 4%

167. To the extent it is argued Treuhaft’s control information (e.g., user identifier,
subscriber identifier, device ID, or CLIENTID) does not disclose a terminal domain name in the
narrow sense of a hierarchical domain name in the form server.organization.type, see Ex. 1012, 4
(definition of domain name), in my opinion, it would have been obvious to a POSA to modify
Treuhaft to use such a hierarchical domain name of the host device 105 as the control information.
Treuhaft teaches that the purpose of the host device identifier contained in the DNS query is to
“enable[] the domain name service to retrieve subscriber information” which “include[s]

preferences or other settings for how a user or subscriber wishes to control domain name resolution

70 of 161

within the DNS resolution features.” Id., § [0060]; see also id.,] [0039] (“host device 105 may
encode within a DNS query an identifier, such as an account ID or index, that specifies where DNS

nameserver 120 can find the preferences or subscriber information used by options 277).

168. Thus, the purpose Treuhaft’s control information is to identify the owner or
subscriber associated with the host device 105 seeking access to the Internet. In my opinion, a
POSA would have understood that any piece of information associated with the user or subscriber
could be used as the control information in the DNS query, such as an IP address or hierarchical
domain name. Indeed, according to its dictionary definition, a hierarchical domain name serves
the exact purpose of Treuhaft’s user identifier, subscriber identifier, device identifier, or other

control information: “An address of a network connection that identifies the owner of that address

in a hierarchical format.” Ex. 1012, 4. And hierarchical domain names were routinely used for this
purpose long before the 040 Patent. In my opinion, a POSA would have found it obvious to use a
hierarchical domain name for the host device 105 as an alternative, or in addition to, Treuhaft’s

user identifier, subscriber identifier, device identifier, or other type of control information.

169. Accordingly, in my opinion, Treuhaft discloses, or at least suggests, “receiving a
service request packet sent by a terminal device, wherein the service request packet carries a

terminal domain name indicating the terminal device ... ,” as claimed.

c. [1.2] “resolving the received server domain name to obtain a
service server Internet protocol (IP) address; and”

170. In my opinion, Treuhaft discloses, or at least suggests, this element. Specifically,
Treuhaft discloses resolving the received server domain name (domain name associated with URL
contained in the modified DNS query) to obtain a service server Internet protocol (IP) address.
Treuhaft explains, “in step 530, the DNS query is received. In step 535, the DNS query is parsed
or otherwise processed at the DNS nameserver to determine the domain name and the control

information.” Ex. 1008, 9 [0063]. Then, “[i]n step 540, an IP address is determined using one or

more DNS resolution options or features and the control information. In one example, the domain

name is resolved to its corresponding IP address.” Id., § [0064].

171. Accordingly, Treuhaft discloses, or at least suggests, “resolving the received server

domain name to obtain a service server Internet protocol (IP) address,” as claimed.

71 of 161

d. [1.3] “discarding the service request packet if the resolved service
server IP address does not belong to a preset service server IP

address corresponding to the received terminal domain name in a
preset list,”

172. In my opinion, Treuhaft discloses, or at least suggests, this element. As explained
below, the DNS name server 120 of Treuhaft maintains subscriber information 208 for various
users or subscribers, which corresponds to the claimed “preset list.” See id.,] [0028], [0029],
[0034], [0036], [0039], [0054], [0060], [0064], FIG. 2 (subscriber information 280). If the
subscriber information 208 for the user or subscriber indicates to block access to the IP address
resolved from the modified DNS query—such as an IP address for an inappropriate website—the
DNS name server 120 of Treuhaft discards the modified DNS query by not returning that IP
address to the host device 105. See, e.g., id., 1 [0027], [0028].

173. Specifically, Figure 2 of Treuhaft shows the DNS name server 120 storing

subscriber information 280 for the users or subscribers of the system in memory 220:

72 of 161

DNS
NAMESERVER

120
X - COMM/LAN
PRO(ﬁSbOR INTEREACE
230
MEMORY
220 WAN INTERFAGE
— 240
DNS SERVER PROGRAM
260
250
OBTIONS FOR s
RESOLVING DNS
QUERIES
270

\\\\\E*
.

S TR I R
bR E} DEsed sy

FIG. 2

Treuhaft, FIG. 2%
As highlighted above, the subscriber information 280 corresponds to the claimed preset list. The
subscriber information can include preferences or other settings for how a user or subscriber
wishes to control domain name resolution within the DNS resolution features.” Id., [0060]. “For
example, a user or subscriber may establish subscriber information that instructs DNS nameserver
120 to alter responses to DNS requests that are associated with adult web sites, potential phishing
or pharming sites, and other sites deemed inappropriate by the user or containing material illegal
in the country of the user.” Id., § [0028]. The “subscriber information associated with the user may

be used to alter the IP address in a DNS response that the user receives.” /d.

174. Insteps 535-550 of Figure 5, the name server 120 of Treuhaft applies the subscriber

information for the user or subscriber to the modified DNS query in determining how to respond

73 of 161

to the modified DNS query. See id., 99 [0064]-[0066]. In my opinion, this process corresponds to

the claimed “discarding the service request packet”:

RECENVE DNS QUERY > 530

Treuhaft, FIG. 5B*

175. Specifically, after receiving the modified DNS query, the DNS name server 120
parses the control information in the modified DNS query to identify the particular user or
subscriber that sent the DNS query, and retrieves that user or subscriber’s subscriber information
280 in step 535. Id., 9§ [0064]. Then, in step 540, using the user or subscriber’s subscription
information 280, the DNS name server 120 “make[s] a decision whether to use the corresponding
IP address or another IP address when generating a DNS response based on applying one or more
DNS resolution options or features”. /d. § [0065]. For example, rather than return the resolved IP

address requested by the host device 105, “DNS nameserver 120 may determine to substitute the

74 of 161

IP address of a website that provides information why the domain name is being block[ed],
forwarded, filtered, or otherwise includes material the user has expressed a desire to control.” Id.,
9 [0065]. Then, in steps 545 and 550, the DNS name server 120 respectively generates a DNS
response “substitut[ing] [the] IP address based on applying one or more of the available DNS
resolution options, filters, or features” and sends the DNS response with the substituted IP address

to the host device 105. Id., § [0066].

176. As explained above, the broadest reasonable interpretation of “discarding the
service request packet” includes preventing unauthorized access to the resolved service server IP
address. Supra Section VI.A. Treuhaft’s process in steps 535-550 of Figure 5B prevents the host
device 105 from unauthorized access to the resolved IP address. This is because the DNS name
server 120 alters or substitutes the resolved IP address for a different IP address in the DNS
response if the subscriber information deems access to that IP address unauthorized. Ex. 1008, 9|
[0065], [0066]; see also id., 9 [0028], [0035] For example, Treuhaft may instead “substitute the
IP address of a website that provides information why the domain name is being block[ed],
forwarded, filtered, or otherwise includes material the user has expressed a desire to control.” Ex.

1008, 9§ [0065]; see also id., 9 [0032] (the DNS name server 120 “respond[s] with another IP

address that, for example, redirects the user to a website with additional information for the reason
why the corresponding IP address was not returned”). By responding to the DNS query with a
different IP address than the one requested and blocking the requested IP address, Treuhaft
prevents unauthorized access to the resolved IP address. Thus, in my opinion, Treuhaft discloses

or suggests “discarding the service request packet,” as claimed.

177. Moreover, even if the claimed discarding were construed narrowly to mean
providing no DNS response at all to the DNS query, this option is suggested based on Treuhaft’s
disclosure of “blocking” or “not returning” the IP address for an unauthorized site. See id., |

[0032], [0065].

178. In my opinion, Treuhaft’s subscriber information discloses, or at least suggests, a
“preset list” containing “a preset service server IP address corresponding to the received terminal
domain name,” as claimed. In Treuhaft, the DNS name server 120 applies the subscriber
information to “make a decision whether to use the corresponding [resolved] IP address or another

IP address” if the resolved IP address is not authorized. Id., § [0065]; see also id. | [0065], [0066]

78 of 161

(if the resolved IP address is not authorized, the name server 120 returns a “substitute IP address”).
Treuhaft gives an example in which, applying the subscriber information, the “DNS nameserver
120 may respond with the [resolved] IP address of ‘www.cnet.com’ or may respond with
another IP address that, for example, redirects the user to a website with additional information for

the reason why the corresponding IP address was not returned.” /d., 4 [0032].

179. Based on this disclosure, in my opinion, a POSA would have understood that the
DNS name server 120 of Treuhaft checks the resolved IP address for “www.cnet.com” against
known authorized/unauthorized IP addresses in deciding whether to return the resolved IP address
for “www.cnet.com” or another IP address. That is, if the resolved IP address is authorized for the
user/subscriber of the host device 105—i.e., “belongs to a preset service server IP address
corresponding to the received terminal domain name,” as claimed—the DNS name server 120
returns the resolved IP address. /d. Otherwise, the DNS name server 120 discards the DNS query
by returning a different IP address, thus preventing access to the resolved IP address as discussed

above.

180. Given Treuhaft’s IP address comparison, Treuhaft discloses or at least suggests that
the subscriber information includes a “preset list” of one or more authorized or unauthorized IP
addresses, as claimed. Indeed, in order to make this IP address comparison, Treuhaft necessarily
must store a list of authorized/unauthorized IP addresses somewhere, and the subscriber
information 208 for the particular user/subscriber is the most logical place. As explained above,
the DNS name server 120 stores the subscriber information 280 in memory 220. /d., 4 [0034], FIG.
2. In my opinion, it would have been obvious to implement Treuhaft’s subscriber information as a
preset list of authorized/unauthorized IP addresses. Moreover, it would have been obvious to store
this list of authorized/unauthorized IP addresses in the memory 220 as part of the subscriber

information 280 for the particular user/subscriber.

181. Ifitis argued that Treuhaft’s “preset list” functions as a blacklist for discarding the
DNS query if the resolved IP address belongs to the list, rather than “does not belong™ as claimed,
it would have been obvious to alternatively or additionally implement Treuhaft’s list as a whitelist.
Long before the claimed priority date of the 040 patent, blacklists and whitelists were known and
used interchangeably and/or together in the same system to control access to sites. Depending on

the knowledge of the administrator configuring the access controls for users or subscribers of the

76 of 161

system, it would have been obvious to use a whitelist of authorized IP addresses, a blacklist of
unauthorized IP addresses, or a combination of both a whitelist and a blacklist. For example, if the
administrator wanted to configure Treuhaft’s system so that a user or subscriber may only access
certain known IP addresses, the administrator would have found it obvious to use a whitelist of
authorized IP addresses. But if the administrator wanted to allow access to all sites except those
specifically deemed inappropriate, for example, the administrator would have found it obvious to

use a blacklist.

182. Accordingly, for at least the reasons above, Treuhaft discloses or suggests
“discarding the service request packet if the resolved service server IP address does not belong to
a preset service server IP address corresponding to the received terminal domain name in a preset

list,” as claimed.

e. [1.4] “wherein in the preset list the terminal domain name of
each terminal device is correspondingly provided with a plurality

of accessible service server IP addresses under an access authority
of the terminal device.”

183. In my opinion, Treuhaft discloses, or at least suggests, this element. As explained
above, the subscriber information 280 of Treuhaft discloses or suggests a preset list of
authorized/unauthorized IP addresses that a given user or subscriber has or does not have
authorization to access. Supra Section X.B.1.d. Moreover, in my opinion, Treuhaft’s list of
authorized/unauthorized IP addresses for users or subscribers discloses or suggests the claimed
“corresponding[] ... plurality of accessible service server IP addresses under an access authority

of the terminal device,” as recited in element [1.4].

184. Treuhaft explains that its system allows “DNS resolution [to] be controlled on a

per-request basis for each individual user or device.” Ex. 1008, 9 [0008], [0024]. This suggests

the DNS name server 120 contains subscriber information 280 for multiple users or subscribers,
as the DNS name server 120 would need this information to process DNS queries on a user-by-
user or subscriber-by-subscriber basis. As discussed above, the subscriber information 280
includes, or suggests, a list of authorized/unauthorized IP addresses for its users or subscribers.
Thus, it would have been obvious to arrange Treuhaft’s list such that the user identifier, subscriber
identifier, device ID, CLIENTID, or hierarchical domain name (claimed terminal domain name)

associated with each host device 105 (claimed terminal device) maps to the corresponding

77 of 161

authorized/unauthorized IP address(es) for that user or subscriber. In my opinion, mapping the
host device identifiers to their corresponding authorized/unauthorized IP addresses in this manner
would allow the DNS name server 120 to check the resolved IP address against the
authorized/unauthorized IP addresses for that user or subscriber when processing a DNS query

from that user or subscriber.

185. Accordingly, Treuhaft discloses, or at least suggests, “wherein in the preset list the
terminal domain name of each terminal device is correspondingly provided with a plurality of

accessible service server IP addresses under an access authority of the terminal device,” as claimed.
2. Dependent Claim 4

a. [4.1] “The method according to claim 1, wherein, after the

resolving the received server domain name to obtain the service
server Internet protocol (IP) address, the method further
comprises:

if the resolved service server IP address belongs to the preset
service server IP address corresponding to the received terminal
domain name in the preset list, establishing a connection between
the terminal device and the service server corresponding to the
service server IP address, to enable the service server to provide a
service corresponding to the service request of the terminal device
to the terminal device.”

186. Claim 4 depends on independent claim 1 and recites the additional elements quoted
above. Treuhaft anticipates and renders obvious independent claim 1 for the reasons discussed
above. Supra Section X.B.1. Moreover, in my opinion, Treuhaft discloses, or at least suggests, the

additional elements of claim 4.

187. As explained above, Treuhaft discloses or suggests that the DNS name server 120
uses a list of authorized/unauthorized IP addresses for each user or subscriber of the system to
determine whether the resolved IP address is authorized/unauthorized. Supra Sections X.B.1.d, e.
If the resolved IP address authorized, the “DNS nameserver 120 ... use[s] the corresponding IP
address of the domain name”—i.e., the resolved IP address—in the DNS response to the host
device 105 in steps 545 and 550. Ex. 1008, § [0066]. As shown in Figure 5C of Treuhaft, the host
device 105 subsequently receives the DNS response from the name server 120 (step 555),
determines the resolved IP address from the DNS response (step 560), and forwards the IP address
to an application running on the host device 105 (step 565). See id., § [0067], FIG. 5C.

78 of 161

188. Inmy opinion, a POSA would have understood that, upon forwarding the IP address
to the application on the host device 105, the application connects to the server associated with
that IP address. Indeed, Treuhaft teaches that the application running on the host device, which
sent the DNS query for the IP address, is a web browser. See id.] [0025], [0057]. And a web
browser is an application, used to browse the Internet, that sends a DNS query for an IP address to
a DNS server, receives a DNS response containing the IP address from the DNS server, and
connects to a server located at the IP address. If it is argued that Treuhaft does not expressly
disclose connecting to the server using the IP address, a POSA would have found it obvious to
have the browser application connect to the server located at the returned IP address because
Treuhaft seeks to enable Internet connections with DNS-based access controls, and the purpose of
a browser is to access the Internet using IP addresses returned from DNS servers. See, e.g., id.,

[0022]-[0024]

189. Accordingly, in my opinion, any combination of steps 545, 550 (Figure 5B,
reproduced below) performed by the name server 120 and steps 555-565 (Figure 5C) performed
by the host device 105 discloses or suggests “if the resolved service server IP address belongs to
the preset service server IP address corresponding to the received terminal domain name in the

preset list, establishing a connection ... ,” as recited in claim 4:

79 of 161

RECEHE DNS QUERY L~ 530

!

FARSE DOMAHN HAME AND CONTRCL
INFORMATION AT DNG NAMESERVER

DETERMINE P ADDRESS USING OPTIONS FOR
RESOLVING DNS QUERIES AND CONTROL ko™ 540
INFORMATION i

!

FIG. 5B

Treuhaft, FIG. 5B*

190. In my opinion, under the broadest reasonable interpretation standard, the DNS
name server 120’s sending the DNS response with the resolved IP address to the host device 105
facilitates “establishing a connection,” as claimed. This is because, as explained above, the
application running on the host device 105 connects to the intended server using the IP address
contained in the DNS response upon receiving the DNS response. See, e.g., Ex. 1008, q [0067],
FIG. 5C; see also id., 19 [0025], [0057]. That is, the process of returning the DNS response to the
host device enables the establishment of a connection between the host device 104 (claimed
terminal device) and the server located at the IP address (claimed service server corresponding to

the service server IP address).

80 of 161

191. Accordingly, in my opinion, Treuhaft discloses or suggests “wherein, after the
resolving the received server domain name to obtain the service server Internet protocol (IP)
address, the method further comprises: if the resolved service server IP address belongs to the
preset service server IP address corresponding to the received terminal domain name in the preset
list, establishing a connection between the terminal device and the service server corresponding to
the service server IP address, to enable the service server to provide a service corresponding to the

service request of the terminal device to the terminal device,” as recited in claim 4.
3. Dependent Claim 5

a. [5.11 “The method according to claim 1, wherein, after the

resolving the received server domain name to obtain the service
server Internet protocol (IP) address, the method further
comprises:

if the resolved service server IP address belongs to the preset
service server IP address corresponding to the received terminal
domain name in the preset list, determining a service type of the
service request according to the terminal domain name of the
terminal device.”

192. Claim 5 depends on independent claim 1 and recites the additional elements quoted
above. Treuhaft anticipates and renders obvious independent claim 1 for the reasons discussed
above. Supra Section X.B.1. Moreover, in my opinion, Treuhaft discloses, or at least suggests, the
additional elements of claim 5 because, as explained below, the DNS name server 120 uses a
resource record contained in the DNS query to determine the DNS extension capabilities of the

host device 105 (claiming determining a service type).

193. As Treuhaft explains, the DNS query 400 contains fields the host device 105 uses
“to advertise its own extended capabilities to the message receiver (e.g., DNS nameserver 120).”
See Ex. 1008, 4 [0040]-[0041], FIG. 4. “This may be accomplished through the inclusion of an
OPT pseudo-RR in the additional data section of a request or response. The OPT pseudo-RR may
include one or more EDNS options.” /d., § [0041]. OPT pseudo-RR refers to an options resource
record contained in a DNS query sent according to the Extension Mechanisms for DNS (EDNS)
specification. A device uses this resource record in a DNS query to identify DNS extension
capabilities to the DNS server. For example, one such extension mechanism is DNS Security

Extensions (DNSSEC), securing data exchanged over DNS using cryptography.

81 ef 161

194, In my opinion, a POSA would have understood that the host device 105 in Treuhaft
uses the options resource record to indicate to the DNS name server 120 that it supports DNSSEC
or another type of DNS extension (claimed service type). See id., 4 [0041]. In the case of a
DNSSEC-enabled host device 150, for example, the host device 105 includes information in the
options resource record of the DNS query indicating that it supports DNSSEC. Upon receiving the
DNS query, the DNS name server 120 unpacks the DNS query, and determines from this resource
record that the host device 105 supports DNSSEC. Accordingly, the DNS server responds to the
host device 105 according to the DNSSEC protocol, such as by engaging in a cryptographic
handshake routine with the host device 105 and/or encrypting its DNS response. Thus, according
to EDNS protocol, the DNS name server 120 of Treuhaft “determin[es] a service type of the service
request,” as claimed, based on information contained in the options resource record. See id., |

[0040]-[0041].

195. In my opinion, Treuhaft further discloses that the DNS name server 120 determines
the service type of the DNS query “according to the terminal domain name of the terminal device,”
as claimed. For example, Treuhaft explains that the host device 105 may include its CLIENTID in
the options resource record to identify its DNS extension capabilities to the DNS name server 120:

In some embodiments, host device 105 can define a new EDNS option
called CLIENTID for control of user, device, or vendor-specific DNS
server behavior. The CLIENTID option may appear in an OPT pseudo-RR
in the additional data section of a request. In general, a CLIENTID option
applies to the DNS request that it accompanies. Thus, the CLIENTID can
allow a per-request control of each DNS message.

Id., 9 [0042]. Thus, the DNS name server 120 of Treuhaft uses the CLIENTID in the options
resource record of the DNS query to determine the host device 105’s (claimed terminal device)
DNS extension capabilities (claimed service type). Id. As explained above, the CLIENTID
corresponds to the claimed terminal domain name because it identifies the user or subscriber
associated with the host device 105. Supra Section X B.1.b; see also Ex. 1008, 9 [0042]-[0045].
And because the DNS name server 120 uses the CLIENTID (claimed terminal domain name) in
the options resource record of the DNS query to determine the host device 105’s DNS extension
capabilities, it is my opinion that Treuhaft discloses or suggests determining the service type of

the DNS query “according to the terminal domain name of the terminal device,” as claimed.

82 of 161

196. For at least the reasons above, it is my opinion that Treuhaft discloses or suggests
“wherein, after the resolving the received server domain name to obtain the service server Internet
protocol (IP) address, the method further comprises: if the resolved service server IP address
belongs to the preset service server IP address corresponding to the received terminal domain name
in the preset list, determining a service type of the service request according to the terminal domain

name of the terminal device,” as recited in claim 5.

4. Independent Claim 6
197. As set forth below, it is my opinion that Treuhaft discloses or suggests of the
elements of independent claim 6 for reason similar to those discussed above for independent claim

1.

a. [6.pre] “A deep packet inspection (DPI) device comprising a
hardware processor and a non-transitory computer readable
storage medium including executable instructions that, when
executed by the processor perform a method comprising:”

198. To the extent the preamble is limiting, in my opinion, Treuhaft discloses this

element. Specifically, the DNS name server 120 of Treuhaft corresponds to the claimed DPI

device:

83 ef 161

(10

HOST DESICE

“g deep preket

inspection
{DP) device)”

r—————— — — — — —

ALY HGNU!\HV" I)N':»

|

i NAM |

350~ i |

w2~ | 1 Ly |

e : :

3 T o I

i R |

i !

e 1
e e DD
| BOOT DNS HAMESERVERS {
! 130 !
‘ et 1
V| T !
| {
{ ROGT NS BOOT BHE i
i NAMESERVER NAMESERVER |1

| 135 240 i FIG. 1

{ 1 i
!

ONS
NAMESERVER

i
1
E INFORMATION
1

i

MEMORY
220

QPTIONS FOR

COMMAAN
INTERFACE

RESOLVING DNS
QUERIES
27¢

SUBSCRIBER

N

WWAN INTERFACE
240

f 250

Treuhaft, FIGS. 1, 2*

As highlighted above, the DNS name server 120 has a processor 210 (claimed processor) and a

memory 200 (claimed computer readable storage medium) storing a DNS server program 260

(claimed executable instructions), executed by the processor 210 to perform the functions of the

DNS name server 120. Ex. 1008, 9 [0033]-[0034], [0038].

199.

Accordingly, in my opinion, Treuhaft discloses or suggests

“la] deep packet

inspection (DPI) device comprising a hardware processor and a non-transitory computer readable

storage medium including executable instructions that, when executed by the processor perform a

method,” as claimed.

b. [6.1]

“receiving a service request packet sent by a terminal device,

wherein the service request packet carries a terminal domain
name indicating the terminal device and a server domain name
indicating a service server required by the service request packet
sent by the terminal device;”

200.

See the discussion above for element [1.1]. Supra Section X B.1.b.

84 of 161

c. [6.2] “resolving the server domain name to obtain a service server
Internet protocol (IP) address; and”

201. See the discussion above for element [1.2]. Supra Section X.B.1.c.

d. [6.3] “discarding the packet if the service server IP address

resolved does not belong to a preset service server IP address
corresponding to the received terminal domain name in a preset
list,”

202. See the discussion above for element [1.3]. Supra Section X B.1.d.

e. [6.4] “wherein in the preset list the terminal domain name of

each terminal device is correspondingly provided with accessible
service server IP addresses under an access authority of the
terminal device.”

203. See the discussion above for element [1.4]. Supra Section X B.1.e.
S. Dependent Claim 9

a. [9.1]1 “The DPI device according to claim 6, wherein after the

resolving the received server domain name to obtain the service
server Internet protocol (IP) address, the method further
comprises:

if the service server IP address resolved belongs to the preset
service server IP address corresponding to the received terminal
domain name in the preset list, establishing a connection between
the terminal device and the service server corresponding to the
service server IP address, to enable the service server to provide a
service corresponding to the service request of the terminal device
to the terminal device.”

204. Claim 9 depends on independent claim 6 and recites the additional elements quoted
above. Treuhaft anticipates and renders obvious independent claim 6 for the reasons discussed
above. Supra Section X.B.4. Moreover, claim 9 recites subject matter virtually identical to that
discussed above for dependent claim 4. Accordingly, for the reasons discussed above in connection
with claim 4, it is my opinion that Treuhaft discloses, or at least suggests, the subject matter of
claim 9. Supra Section X.B.2. For example, as explained above, the DNS name server in Treuhaft
facilitates or enables establishing the connection by returning the resolved IP address to the host

device, which uses the returned IP address to connect to the server.

85 of 161

6. Dependent Claim 10

a. [10.1] “The DPI device according to claim 6, wherein after the

resolving the received server domain name to obtain the service
server Internet protocol (IP) address, the method further
comprises:

if the service server IP address resolved belongs to the preset
service server IP address corresponding to the received terminal
domain name in the preset list, determining a service type of the
service request according to the terminal domain name of the
terminal device.”

205. Claim 10 depends on independent claim 6 and recites the additional elements
quoted above. Treuhaft anticipates and renders obvious independent claim 6 for the reasons
discussed above. Supra Section X B.4. Moreover, claim 10 recites subject matter virtually identical
to that discussed above for dependent claim 5. Accordingly, for the reasons discussed above in
connection with claim 5, it is my opinion that Treuhaft discloses, or at least suggests, the subject

matter of claim 10. Supra Section X.B.3.

7. Independent Claim 11
206. As set forth below, in my opinion, Treuhaft discloses or suggests of the elements
of independent claim 11 for reasons similar to those discussed above for independent claims 1 and

11.

a. [11.pre] “A system, comprising: a deep packet inspection (DPI)
device; and a terminal device:”

207. As highlighted in Figure 1 below, Treuhaft discloses a DNS system 100 (claimed
system) comprising a DNS name server 120 (claimed DPI device) and a host device 105 (claimed

terminal device):

86 of 161

ONS MAMESERVERS

115 “a deep packet !

inspectian {(OPL}

}
}
% SEINI |
| -\\\\\§\\ i

| AlJTbﬂR!“‘f\Ti VE DNS

|
| NAMESERVERS |
B0 7N | 353 |
125~ |
|~ 445 : AUTHORITATIVE :
DNS
I' NAMESERVER :
| 150 |
e e e e — — = J

L

na an Raas adh aaa wan s aaa AR AR AR AR AR AR wAR AR RS AR ARG

i
i ié?e, t
| M {
RN - I
i i
y ROCT DNS ROCT DNS !
| !] NAMESERVER MAMESERVER |1
i B 140 | FIG. 1
! L
— T T i

Treuhaft, FIG. 1%

208. Accordingly, in my opinion, Treuhaft discloses or suggests “[a] system,

comprising: a deep packet inspection (DPI) device; and a terminal device,” as claimed.

b. [11.1] [a terminal device] “configured to send a service request
packet to the DPI device, wherein the packet carries a terminal
domain name indicating the terminal device and a server domain
name indicating a service server required by the service request
sent by the terminal device;” and

“the DPI device having a hardware processor and a non-

transitory computer readable storage medium including
executable instructions that, when executed by the processor
perform a method comprising: receiving the service request packet

87 of 161

sent by the terminal device;”

209. As I explain above for element [1.1], in Treuhaft, the host device 105 (claimed
terminal device) is configured to send a DNS query (claimed service request packet) to the DNS
name server 120 (claimed DPI device). Supra Section X .B.1.b. Additionally, the DNS query
(claimed service request packet) carries control information (claimed terminal domain name)
indicating the host device 105 (claimed terminal device) and a domain name of a URL (claimed
server domain name) indicating a server to which the host device 105 seeks to connect (claimed

service server required by the service request sent by the terminal device). /d.

210. As explained above for element [6.pre], the DNS name server 120 (claimed DPI
device) has a processor 210 (claimed processor) and a memory 200 (claimed computer readable
storage medium) storing a DNS server program 260 (claimed executable instructions), executed
by the processor 210 to perform the functions of the DNS name server 120. Ex. 1008, 9 [0033]-
[0034], [0038]. And, part of that method includes receiving the DNS query (claimed service
request packet) sent by the host device 105 (claimed terminal device). Supra Section X.B.1.b; see
also Ex. 1008, 41 [0063] (“In step 525, the modified DNS query is sent to a DNS nameserver. For
example, the modified DNS query may be sent to DNS nameserver 120.”), q [0064] (“in step 530,
the DNS query is received”), FIG. 5B (step 550), FIG. 5C (step 555).

211. Accordingly, in my opinion, Treuhaft discloses or suggests “a terminal device ...
configured to send a service request packet to the DPI device, wherein the packet carries a terminal
domain name indicating the terminal device and a server domain name indicating a service server
required by the service request sent by the terminal device” and “the DPI device having a hardware
processor and a non-transitory computer readable storage medium including executable
instructions that, when executed by the processor perform a method comprising: receiving the

service request packet sent by the terminal device,” as claimed.

c. [11.2] “resolving the server domain name to obtain a service
server Internet protocol (IP) address; and”

212. See the discussion above for element [1.2]. Supra Section X B.1.c.

d. [11.3] “discarding the packet if the service server IP address

resolved does not belong to a preset service server IP address
corresponding to the received terminal domain name in a preset

88 of 161

list,”

213. See the discussion above for element [1.3]. Supra Section X B.1.d.

e. [11.4] “wherein in the preset list the terminal domain name of

each terminal device is correspondingly provided with accessible
service server IP addresses under an access authority of the
terminal device.”

214. See the discussion above for element [6.4]. Supra Section X B.1 e.

C. Ground 4: Treuhaft in View Sorenson Renders Obvious Claims 1, 4-6, and 9-

11 of the’ 040 Patent
215. It might be argued Treuhaft’s subscriber information 280 constitutes a preset list of
authorized/unauthorized server domain names, rather than IP addresses. On this basis, it might be
argued that Treuhaft discloses determining whether the server domain name is on the preset list—
not the IP address resolved from that domain name—and so Treuhaft does not disclose “discarding

the service request packet if the [resolved] service server IP address does not belong to a preset

service server IP address ... in a preset list,” as recited in elements [1.3], [6.3], and [11.3]. This
argument would be incorrect at least because, as discussed above, Treuhaft at least suggests that
the subscriber information 280 contains a list of authorized and/or unauthorized IP addresses for
each user or subscriber. Supra Sections X B.1.d, e. In the case of an authorized IP address list, in
my opinion, a POSA would have understood Treuhaft to disclose discarding the DNS query if the
resolved IP address is not on the authorized list. And, moreover, a POSA would have found it
obvious to use a list of authorized IP addresses, unauthorized IP addresses, or both for the purpose

of controlling access to the Internet.

216. Nonetheless, even if such an argument were accepted, in my opinion, the additional
disclosure of Sorenson renders obvious elements [1.3], [6.3], and [11.3]. Accordingly, as explained
below, it is my opinion that the combination of Treuhaft in view of Sorenson further renders
obvious claims 1, 4-6, and 9-11 of the 040 Patent.

1. Sorenson Discloses Discarding the Service Request Packet “if the

[Resolved] Service Server IP Address Does Not Belong to a Preset
Service Server IP Address -+ in a Preset List” (Elements [1.3], [6.3],

89 of 161

and [11.3])

217. In my opinion, Sorenson discloses or suggests elements [1.3], [6.3], and [11.3] by

denying a connection if the IP address resolved from a domain name in the connection request is

found on an IP address blacklist.

218. Specifically, Sorenson discloses a
“system and method for blocking access by a
network device to specific network resources by
comparing a specific resource identifier against
entries in a blacklist and facilitating a connection
accordingly.” Ex. 1009, Abstract. In Sorenson, the
system receives “a call request for the establishment
of a communication session between IP device 12
and associated service 20. Id., 19 [0027]; see also
id., q[0031], [0032]. The IP device 12, call request,
and service 20 of Sorenson respectively correspond
to the claimed terminal device, service request
packet, and service server. Like the service request
packet of the 040 Patent, Sorenson’s call request

“include[s] a specific identifier such as an entered

IP address, domain name, or conventional phone number or name resolved into one of an IP

address or domain name,” which corresponds to the claimed server domain name. /d., 4 [0031].

219. Before granting the call request, the system of Sorenson performs a two-stage

blacklist check to determine whether to establish the connection or discard the request. See id.,
[0031]-[0032], FIG. 6. As shown in Figure 2 of Sorenson above, the blacklist 500 contains both
blacklisted domain name names 512 and blacklisted IP addresses 510. See id., § [0028], FIG. 2. In

my opinion, the blacklist 500 of blacklisted IP addresses 510 corresponds to the claimed preset list.

90 of 161

220. First, as shown in step 610 of Figure 6, Sorenson performs a domain-name-blacklist

check by “compar[ing] 610 the domain name against the blacklist 500 ~ (FIG. 2) to determine
612 if the domain name is located within the blacklist 500 ~.” Id., 9 [0031]. “If the domain
name utilized for initiating the call is located with the blacklist 500 ~, then the IP device denies
618 the completion of the call and may alternatively notify the user of such denial.” But “[i]f
the domain name is not on the blacklist, then” Sorenson performs an IP-address-blacklist check

before establishing the connection. /d. Specifically, Sorenson “resolves ... the domain name into
an IP address for further comparison” in step 614, id., and then “compares ... the IP address against

the blacklist 500°” in step 616, id.,

' o 1P SEUE ol miTATicas S
[0032]. If the IP address is located within &-\.T.%.__,)
the blacklist 500°, Sorenson denies the [HSER ACTIVATES 17 PEUSE for 06
| CALL EeRgEST {'J

connection. /d., § [0032], FIG. 6 (step

618). But if the IP address is not found on C b - ey il ”
the blacklist 500°, Sorenson establishes ma?mciggmﬁ:ﬁmﬂ
i # a5
the connection. /d., § [0032], FIG. 6 (step "”“"'—) -
\ &t
e R

622).

N~ RABIE ¥ .
e 5uc£u:f g

221, As highlighted in Figure 6 P e e
of Sorenson on the right, the combination

of steps 616, 620, and 618—in which

Sorenson determines whether the resolved

IP address is on the IP backlist and denies

the connection if it is—corresponds to

“discarding the service request packet if
[P el Auonis

CALL comPLETIOR

the [resolved] service server IP address

does not belong to a preset service server ’:‘L\

IP address ... in a preset list,” as recited in

elements [1.3], [6.3], and [11.3].

2. Rationale to Combine Sorenson with Treuhaft
222. In my opinion, a POSA would have found it obvious and been motivated to use a

list of authorized/unauthorized IP addresses in Treuhaft based on Sorenson’s disclosure for several

91 of 161

reasons. The combination merely involves the use of known technique (Sorenson’s IP address
check) to improve similar devices (Treuhaft’s system) in the same way and/or applying a known
technique (Sorenson’s IP address check) to a known system (Treuhaft) ready for improvement to

yield predictable results.

223. Treuhaft and Sorenson are similar in several ways. For example, Treuhaft aims to
deny DNS queries seeking access to sites “categorized as an adult web site, a potential phishing or
pharming site, and a website whose content has been deemed inappropriate by the user or
containing material illegal in the country of the user.” Ex. 1008, § [0027]; see also id. | [0006],
[0028]. Similarly, Sorenson seeks “to prevent access by user 14 to unauthorized or blacklisted
services” on the Internet. Ex. 1009, [0023]. Thus, Treuhaft and Sorenson are analogous
references having the same purpose to prevent users from accessing inappropriate sites, services,

or other online resources.

224. Treuhaft and Sorenson also have similar structure and operation. For example,
Treuhaft’s DNS name server 120 stores subscriber information 280 used to control access to
authorized/unauthorized sites for each user or subscriber of the system. See, e.g., Ex. 1008,
9 [0023], [0028], [0029], [0034], [0036], [0039], [0064], [0065]. Similarly, Sorenson’s system
maintains an IP address 510 and domain name 512 blacklist 500 used to control user access to
online resources. See Ex. 1009, 9 [0023], [0025], [0026], [0028]-[0032]. Both systems also
receive and screen connection requests before or allowing or denying them. Compare Ex. 1008,
9 [0064]-[0067], FIG. 5B with Ex. 1009, 9f [0031]-[0032], FIG. 6. Accordingly, Treuhaft and
Sorenson describe structurally- and functionally- similar systems designed to achieve a similar

purpose.

225. To the extent it is argued that Treuhaft only checks the domain name before
allowing or denying the connection, Sorenson improves upon Treuhaft by using a blacklist to
check both the domain name and the IP addressed resolved from that domain name before allowing
or denying a connection. Ex. 1009, 9 [0027], [0031], [0032]. In my opinion, a POSA have
understoods that domain names and IP addresses do not necessarily have a one-to-one
correspondence, as multiple domain names might resolve to the same IP address, and a given
domain may resolve to multiple IP addresses. In some cases, for example, the same inappropriate

website may have multiple domain names, or different DNS servers may resolve different domain

92 of 161

names to that same inappropriate address. An administrator might be aware of some of those
domain names but not others, and thus only include the known domain names in a domain name
blacklist. If a user later issues a connection request using one of the unknown domain names for
the inappropriate site not on the blacklist, the system would allow the connection to the
inappropriate site. Sorenson’s technique of checking the resolved IP address as well as the domain
name, however, would catch and deny such inappropriate connection requests that Treuhaft’s
system might otherwise allow. Accordingly, Sorenson’s application of both a domain name and
an IP address blacklist improves upon Treuhaft, to the extent Treuhaft only discloses checking the
domain name before allowing or denying a connection. Thus, in my opinion, a POSA would have

had motivation to make the combination.

226. Adding Sorenson’s technique of applying an IP address blacklist (in addition to a
domain name blacklist) to Treuhaft would improve Treuhaft in the same way it improves
Sorenson’s system. Sorenson receives a connection request including a domain name, compares
the domain name against the blacklist, resolves the domain name into an IP address if the domain
name is not on the blacklist, compares the resolved IP address against the IP address blacklist, and
then allows the connection if the IP address is not on the blacklist. See Ex. 1009, § [0031]-[0032],
FIG. 6 (steps 608, 610, 612, 614, 616, 621, 622). Similarly, Treuhaft’s name server receives a DNS
query containing a domain name, resolves the domain name to its corresponding IP address, and
applies the subscriber information to determine whether to return the resolved IP address or block

that IP address and return a different one. Ex. 1008, q [0064]-[0065]; FIG. 5B (steps 530-540).

227. In my opinion, because Treuhaft and Sorenson follow this same general sequence
in processing a request, Sorenson’s step of checking the IP address would be included as part of
step 540 of Treuhaft’s method 500 or added after step 540 as another step. See id., § [0065], FIG.
5B. In step 540, Treuhaft resolves the domain name in the DNS query to its corresponding IP
address and determines whether to use that IP address or another IP address in the DNS response.
1d., 4 [0065]. Having the resolved IP address, the DNS name server 120 of Treuhaft would simply
check that IP address against Sorenson’s added blacklist at that time as part of the decision whether
to return it or return another address to the host device 105. Accordingly, in my opinion,
Sorenson’s known technique of checking the resolved IP address would be incorporated into

Treuhaft’s similar system to improve Treuhaft in the same way it benefits Sorenson.

93 of 161

228. In my opinion, Treuhaft stands ready for improvement by adding Sorenson’s
technique, and the combination would be made through routine skill in the art with predictable
results. For example, Treuhaft’s method 500 stands ready for improvement by adding Sorenson’s
IP address check as part of step 540, or another step following step 540, as discussed above. Since
Treuhaft has already resolved the domain name into its IP address in step 540, the modified system
would simply check the resolved IP address against the blacklist at that time. Thus, a POSA would
incorporate Sorenson’s technique without otherwise significantly modifying or redesigning

Treuhaft’s method.

229. Moreover, Treuhaft’s DNS name server 120 already has a memory 200 storing
subscriber information 280. See Ex. 1008, 4 [0033]-[0034], FIG. 2. The subscriber information
280 likewise would be augmented to include Sorenson’s blacklist information for each user or
subscriber without otherwise significantly changing the structure or operation of the DNS name
server 120. Thus, in my opinion, the combination would yield predictable results and would be
made with a reasonable expectation of success. Accordingly, a POSA would have found it obvious

to combine Treuhaft and Sorenson as proposed.

230. As explained above with respect to elements [1.3] and [1.4], in my opinion,
Treuhaft discloses, or at least suggests, that its subscriber information 280 constitutes a preset list
of authorized and/or unauthorized IP addresses. Supra Sections X.B.1.d, e. Thus, even though
Sorenson discloses applying an IP address blacklist to discard the request if the resolved IP address
is on the list--rather than “does not belong” to the list, as claimed, Treuhaft discloses or renders
obvious applying a whitelist of authorized IP addresses, a blacklist of unauthorized IP addresses,
or both in controlling the host device’s access to the Internet. And, in the case of a whitelist of
authorized IP addresses, Treuhaft discards the DNS query if the resolved IP address is not on the
whitelist in the subscriber information 280. Thus, in my opinion, Treuhaft in combination with
Sorenson renders obvious “discarding the service request packet if the [resolved] service server IP
address does not belong to a preset service server IP address ... in a preset list,” as recited in
elements [1.3], [6.3], and [11.3].” And for the same reasons, the combination of Treuhaft and

Sorenson renders obvious that the preset list lists “service server IP addresses under an access

authority of the terminal device” as recited in elements [1.4], [6.4], and [11.4], rather than not

under an access authority of the terminal device. /d.

94 of 161

231. As discussed above, Treuhaft discloses or at least suggest implementing the
subscriber information 280 as a “list” of authorized/unauthorized IP addresses. Supra Sections
X.B.1.d, e. To the extent it is argued that Treuhaft alone does not expressly disclose or suggest a
list, however, it is my opinion the combination with Sorenson’s disclosure of an IP address
blacklist further renders obvious using a “list” to implement Treuhaft authorized/unauthorized IP
addresses. Accordingly, in my opinion, Treuhaft in view of Sorenson renders obvious elements
[1.3],[1.4],[6.3],[6.4],[11.3], and [11.4], and so the combination of Treuhaft in view of Sorenson
further renders obvious claims 1, 4-6, and 9-11 of the 040 Patent.

D. Grounds 5 and 6: Treuhaft/Sorenson in View of Bellinson Renders Obvious
Claims 1, 4-6, and 9-11 of the’ 040 Patent Under § 103

232. Potentially, it may be argued that Treuhaft, or Treuhaft and Sorenson only disclose

or suggest applying an IP address blacklist of unauthorized IP addresses, rather than a whitelist of

authorized IP addresses, in determining whether to discard the DNS query. Thus, it may be argued,
Treuhaft, or Treuhaft and Sorenson disclose or suggest discarding the service request packet if the
resolved IP address is on the list, rather than “does not belong to a preset service server IP
address ... in a preset list,” as recited in elements [1.3], [6.3], and [11.3]. For similar reasons, it

may be argued Treuhaft’s list contains IP addresses not under the authority of the host device 105,

rather than “service server IP addresses under an access authority of the terminal device” as recited

in elements [1.4], [6.4], and [11.4]. In opinion, such an argument would be incorrect at least for

the reasons discussed above. Supra Section X B.1.e.

233. Even if Patent Owner were correct, however, it is my opinion that Bellinson further
discloses or suggests applying an allow-block list (i.e., a whitelist, blacklist, or combination of
both) in determining whether to discard the request or establish a connection, and thus discloses
these elements. As explained below, in my opinion, Treuhaft in view of Bellinson, and Treuhaft
and Sorenson in view of Bellinson, further render obvious claims 1, 4-6, and 9-11 of the 040
Patent.

1. Bellinson Discloses Discarding the Request “if the [Resolved] Service

Server IP Address Does Not Belong «+ in a Preset List” (Elements
[1.3], [6.3], and [11.3])

234. In my opinion, Bellinson discloses elements [1.3], [6.3], and [11.3] by blocking a

connection request if a requested site address is not found on an allow-block list (claimed preset

95 of 161

list). Specifically, Bellinson discloses “a system and method for controlling whether a user may
access certain Internet sites” by applying “an allow-block list” to “determine[] whether the URL
is referenced on the allow-block list and, if so, allow[] or disallow[] access to the site referenced
by the URL accordingly.” Ex. 1010, Abstract. In Bellinson, “[t]he allow-block list is a listing of
specific site identifiers that the user is expressly authorized to view or prohibited from viewing.”

1d., 9§ [0020]; see also id., | [0009] (“The allow-block list is a file containing a listing of specific

URLs that the user is expressly authorized to view or expressly prohibited from viewing.”).

235. As shown in Figure 3 (reproduced below), in step 244 Bellinson’s system receives
an access request containing “a specified site identifier that references an Internet site. Examples
of such site identifiers include designators such as www.microsoft.com but could also include an

Internet Protocol (IP) address.” Id., § [0049], F1G. 3. In step 246 of Figure 3, Bellinson “determines

whether the site identifier is User lngs in 1o nperating systam —I" Sas
on the allow-block list at T
step 246. Id. “If the site | Crbatais settings for user; allow-§.
l hiook fist | 242
identifier is referenced on p— S
S, SEE :

. . | S F L

the allow-block list,” in step EIG. 3 : Erter site identiier l 244

248 Bellinson “determine[s]
whether the site identifier is
designated as blocked on the a
allow-block fist” d, § ol
[0050]. “If the site identifier 22
is [designated as] blocked,” ... ey

. Local ratings
Bellinson blocks the 1 interprater

connection. /d. Otherwise, g
264

Bellinson allows the e W
connection. /d., § [0051]. 3
w2 ¥
N Yas
236 As {'i}ispy} ~~~~~~~~~~~~~~~~~~~ :
. i
highlighted in Figure 3, N iy |
: : A Pwabpage |
Bellinson discloses | Akl B
: et 354
discarding the request “if ;4 ~~~~~~~~~~~~~~~~~~~~~~~~~
the [resolved service server a6n L END)

96 of 161

IP address does not belong ... in a preset list,” as claimed, by determining that the allow-block list
does not designate the site identifier as allowed in steps 246 and 248. Id., § [0050]. The allow-
block list contains a list of site identifiers designated as allowed and a list of site identifiers
designated as blocked. Id., 9 [0020] (“[t]he allow-block list is a listing of specific site identifiers
that the user is expressly authorized to view or prohibited from viewing.”), [0009]; Thus, in
determining to block access to a site, Bellinson determines that the site identifier is not found on
the allow portion of the list, because the block portion of the list designates the site identifier as
blocked. In my opinion, by blocking the request if the address is not on the allow portion of the
allow-block list, Bellinson discloses discarding the request “if the [resolved service server IP
address does not belong ... in a preset list,” as recited in elements [1.3], [6.3], and [11.3].
2. Rationale to Combine Bellinson with Treuhaft and/or
Treuhaft/Sorenson

237. In my opinion, a POSA would have found it obvious and been motivated to
implement Bellinson’s allow-block list in Treuhaft for several reasons. For example, the references
provide teaching, suggestion, and/or motivation for making this combination. As explained above,
Treuhaft’s DNS name server 120 applies the subscriber information 280 for each user or subscriber
to, among other things, block access to sites “categorized as an adult web site, a potential phishing
or pharming site, and a website whose content has been deemed inappropriate by the user or
containing material illegal in the country of the user.” Ex. 1008, § [0027]; see also id. | [0006],
[0028]. But Treuhaft does not block all connections—only those seeking access to unauthorized
sites. Thus, in my opinion, Treuhaft contemplates both authorized and unauthorized sites, and
Bellinson’s allow-block list mechanism makes it possible to specifically designate both authorized
and unauthorized sites. Accordingly, a POSA would have sought to incorporate Bellinson’s allow-
block list in Treuhaft as a mechanism to allow and block access to sites respectively deemed

authorized and unauthorized.

238. Additionally, whitelists—Ilike the allow portion of Bellinson’s list, and blacklists—
like the block portion of Bellinson’s list, were known and used interchangeably and/or together in
the same system to control access to sites. See, e.g., Ex. 1011, 37. Depending on the particular

implementation, the administrator may find a whitelist, a blacklist, or a combination of both

" For ease of reference, Requester cites the PDF page number of Exhibit 1002,

97 of 161

appropriate for a given situation. See, e.g., Ex. 1011, 3. For example, in some cases, the
administrator may desire a strict approach to access control in which only connections to certain
authorized sites are permitted, and thus may choose a whitelist. This approach may be useful, for
example, in systems with child, student, and/or employee users that should only access certain
specific websites or other resources. In other cases, the administrator may want to give users more
leeway to access a variety of sites while blocking access to certain known unauthorized sites, and
thus choose to use a blacklist. This approach may be useful, for example, if the administrator is
more concerned with preventing malicious attacks on the user’s computer rather than with

preventing the user from accessing certain types of content.

239. The extent of an administrator’s knowledge may also factor into the decision of
whether to use a whitelist and/or a blacklist. See Ex. 1011, 3. For example, if the administrator has
complete knowledge of the sites a user must or should access in the particular environment, a
whitelist may be appropriate. But in cases where the administrator does not have such knowledge,
a blacklist may be more appropriate. Accordingly, in my opinion, incorporating Bellinson’s allow-
block list into Treuhaft gives administrators more options for controlling users’ or subscribers’
access to the Internet, and thus would have sought to make the combination. Thus, a POSA would

have had motivation to make the combination.

240. The combination of Bellinson with Treuhaft merely involves using a known
technique (Bellinson’s allow-block list) to improve a similar device (Treuhaft’s system) in the
same way and/or applying a known technique (Bellinson’s allow-block list) to a known system
(Treuhaft) ready for improvement to yield predictable results. Treuhaft and Bellinson describe
systems similar in a number of ways. As discussed, Treuhaft allows an administrator to use
subscriber information for users or subscribers of the system to block access to sites “categorized
as an adult web site, a potential phishing or pharming site, and a website whose content has been
deemed inappropriate by the user or containing material illegal in the country of the user” Ex.
1008, 9 [0027]; see also id. 9 [0006], [0028]. Similarly, Bellinson’s technique using the allow-
block list enables “parents to effectively control a child’s web site access.” Ex. 1010, §[0008]; see
also id., 19 [0003]-[0007], [0009], [0039]-[0041], [0048], [0057], [0058]. Thus, in my opinion,
Treuhaft and Bellinson are analogous references with the same purpose of allowing administrators

to prevent users from accessing inappropriate sites, services, or other online resources.

98 of 161

241. Treuhaft and Bellinson also have similar structure and operation. As discussed
previously, Treuhaft’s administrator inputs subscriber information 280 for a particular user or
subscriber into the DNS name server 120, which the DNS name server 120 later applies to control
that user’s or subscriber’s access to the Internet. See, e.g., Ex. 1008, 99 [0023], [0028], [0029],
[0034], [0036], [0039], [0064], [0065]. Likewise, in Bellinson, “an administrator or parent would
supply the content settings service with settings for a specified user,” and those “settings could
include the user’s age group, age group map and an allow-block list.” Ex. 1010, q [0057]. Later,
when that user sends a connection request including a site identifier, the Bellinson system retrieves
the user’s settings, including the allow-block list, and applies the allow-block list in determining
whether to allow or block the connection to that site. See, e.g., id., | [0039], [0049]-[0051].
Accordingly, in my opinion, Treuhaft and Bellinson describe structurally- and functionally- similar

systems designed to achieve a similar purpose.

242. Adding Bellinson’s allow-block list to Treuhaft would improve Treuhaft in the
same way it improves Bellinson’s system. When receiving a connection request including a site
identifier, Bellinson retrieves the user’s previously-stored settings including the allow block list,
Ex. 1010, § [0039], FIG. 3 (step 242), and compares the site identifier to the allow-block list in
determining whether to allow or block the connection to that site, id., 9 [0039], [0049]-[0051].
Similarly, when Treuhaft’s DNS name server 120 receives a DNS query containing a domain name,
it retrieves the previously stored subscriber information for the user or subscriber and applies the
subscriber information in determining how to respond to the DNS query. Ex. 1008, 4 [0064]-[0065];
FIG. 5B (steps 530-540).

243. In my opinion, because Treuhaft and Bellinson follow this same general sequence
in processing a request, Bellinson’s allow-blocklist would be incorporated into Treuhaft’s process
to improve Treuhaft in substantially the same way. For example, in the combined system,
Bellinson’s step of retrieving the user’s settings including the allow-block list would be performed
as part of Treuhaft’s step 535 when the DNS name server 120 retrieves the user’s subscriber
information. Compare Ex. 1010, [0039], FIG. 3 (step 242) with Ex. 1008, §[0064], FIG. 5B (step
535). Additionally, Bellinson’s steps of applying the allow-block list would be performed as part
of Treuhaft’s corresponding step of applying the subscriber information to process the DNS query.
Compare Ex. 1010, 4 [0049]-[0051] , FIG. 3 (steps 246, 248) with Ex. 1008, 9 [0065], [0066),
FIG. 5B (steps 540, 545). Because the DNS name server 120 of Treuhaft has already resolved the

99 of 161

IP address at this point, it would simply check that IP address against Bellinson’s allow-block list
as part of the decision whether to return it or return another address to the host device 105.
Accordingly, in my opinion, Bellinson’s known technique of applying an allow-block list would
be incorporated into Treuhaft’s similar system to improve Treuhaft in the same way it benefits

Sorenson.

244, Treuhaft stands ready for improvement by adding Bellinson’s technique, and the
combination would be made through routine skill in the art with predictable results. For example,
Treuhaft’s method 500 stands ready for improvement by adding Bellinson’s allow-block list
process, as discussed above. And since Treuhaft has already resolved the domain name into its IP
address in step 540 or 545, the modified system would simply check the resolved IP address against
the allow-block at that time. Thus, a POSA would incorporate Bellinson’s technique without

otherwise significantly modifying or redesigning Treuhaft’s method.

245. Moreover, Treuhaft’s DNS name server 120 already has a memory 200 storing
subscriber information 280. See Ex. 1008, 4 [0033]-[0034], FIG. 2. The subscriber information
280 likewise would be augmented to include Bellinson’s allow-block list information for each user
or subscriber without otherwise significantly changing the structure or operation of the DNS name
server 120. Thus, in my opinion, the combination would yield predictable results and would be
made with a reasonable expectation of success. /d. Accordingly, a POSA would have found it

obvious to combine Treuhaft and Sorenson as proposed.

246. It is noted that the combination of Treuhaft and Bellinson additionally renders
obvious the recitation in elements [1.4], [6.4], and [11.4] that the preset list contains “service server

IP addresses under an access authority of the terminal device.” Specifically, in my opinion, the

allow portion of Bellinson’s allow-block list, incorporated into Treuhaft, is a list of site identifiers

under an access authority of Treuhaft’s host device 105 (claimed terminal device).

247. As discussed above, Treuhaft discloses or at least suggests implementing the
subscriber information 280 as a “list” of authorized/unauthorized IP addresses. Supra Sections
X.B.1.d, e. But to the extent it is argued that Treuhaft alone does not expressly disclose or suggest
a list, in my opinion, the combination with Bellinson’s disclosure of an allow-block list further

renders obvious using a “list” to implement Treuhaft authorized/unauthorized IP addresses.

106 of 161

248. Accordingly, for the reasons above, it is my opinion that the combination of
Treuhaft in view of Bellinson and/or the combination of Treuhaft/Sorenson in view of Bellinson,
render obvious elements [1.3], [1.4], [6.3], [6.4], [11.3], and [11.4]. Thus, these combinations of
render obvious claims 1, 4-6, and 9-11 of the 040 Patent.

E. Secondary Considerations

249. This Declaration demonstrates that the Challenged Claims of the 040 Patent are
unpatentable as anticipated and obvious in view of the prior art references. I have been told that
the ’040 Patent applicant did not identify any evidence of secondary considerations during
prosecution. Further, I do not believe such secondary considerations would overcome the clear
teachings in the references discussed above.
XI. CONCLUSION

250. For these reasons, it is my opinion that challenged claims 1, 4-6, and 9-11 of
the 040 Patent are unpatentable.

I declare that all statements made herein of my knowledge are true, and that all statements
made on information and belief are believed to be true, and that these statements were made with
the knowledge that willful false statements and the like so made are punishable by fine or

imprisonment, or both, under Section 1001 of Title 18 of the United States Code.

Dated: 11/08/2021 By:

Anéelos'Keromytis, Ph.D.

101 of 161

	DocumentId KVSLZNSKLDFLYX9

